sysmocom

sysmocom - s.f.m.c. GmbH

& 0Smocom

OsmoBTS User Manual

by Harald Welte

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being just *Foreword’,
’Acknowledgements’ and ’Preface’, with no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License".

OsmoBTS User Manual

HISTORY

NUMBER

DATE

DESCRIPTION

NAME

DRAFT

unknown

HW

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

DRAFT, unknown

OsmoBTS User Manual iii
Contents

1 Foreword 1

1.1 Acknowledgements e e e 1

1.2 Endorsements e e e e e e e e e e 2

2 Preface 2

2.1 FOSS lives by contribution! L e e e e e e 2

2.2 Osmocom and SYSIMOCOM v v v v vt ettt e e e e e e e e e e e e e e e e 3

2.3 COITECHIONS .+« v v v v v e e e e e e e e e e e e e e e 3

24 Legaldisclaimers e e e 3

24.1 SpectrumLicense e 3

2.4.2 Software License L e 3

243 Trademarks L e e e 3

244 Liability e 4

2.4.5 Documentation License 4

3 Introduction 4

3.1 Required Skills e e 4

3.2 Getting asSiStanCe e 5

4 Overview 5

4.1 Aboutthismanual L e e 5

4.2 About OsmoBTS o 5

43 CreditS oo 5

4.4 OsmoBTS in the Osmocom GSM network architecture 5

5 Abis/IP Interface 6

5.1 A-bis Operation & Maintenance Link e 6

5.2 A-bisRadio Signalling Link e 6

5.3 Locate Abis/IP based BTS e 7

5.3.1 abisip-find ... L L e 7

54 Deploying anew nanoBTS e 7

5.4.1 dpaccess-config L e 7

6 OsmoBTS Interfaces 8

6.1 OsmoBTS Abis/IP Interface o o e 8

6.2 bts_model specific PHY interface L 9

6.3 OsmoBTS VTY Interface e e 9

6.4 OsmoBTS Control Interface e 9

6.4.1 trx.N.thermal-attenuation e 9

6.5 OsmoBTS GSMTAP Interface e 9

6.6 OsmoBTS PCU Socket Interface 10

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual

7 Control interface

7.1 thermal-attenuation

8 Osmocom Counters

8.1 Osmo Counters (deprecated)
82 RateCounters
83 Statltem
8.4 StatisticLevels
84.1 Global.
842 Peer
84.3 Subscriber
85 StatsReporter
8.5.1 Configuringastatsreporter
8.6 Socketstats
8.6.1 Configuration
8.6.2 Generated statsitems

9 Counters

9.1 RateCounters v i v it i e

10 Osmo Stat Items

11 Osmo Counters

12 The Osmocom VTY Interface

12.1 Accessingthetelnet VIY
122 VIY Nodes o oot
12.3 Interactivehelp

12.3.1 The question-mark (?) command

12.3.2 TABcompletion
1233 Thelistcommand
12.3.4 The attribute system
1235 Theexpertmode

13 libosmocore Logging System

13.1 Logcategories« o v v v v et e
132 Loglevels oo
13.3 Log printing options ot vt
13.4 Logfilters
13.5 Logtargets oo i

13.5.1 Loggingtothe VTY

14

....................... 14

15

15

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

DRAFT, unknown

OsmoBTS User Manual

13.5.2 Logging tothe ring buffer
13.5.3 Logging viagsmtapt
13.5.4 Loggingtoafile
13.5.5 Loggingtosyslog.
13.5.6 Logging to systemd-journal
13.5.7 Loggingtostderr

14 BTS Configuration

14.1 Command Line Options
14.1.1 SYNOPSIS
1412 OPTIONS

14.2 Configurationusingthe VTY L.
14.2.1 Required BTS/TRX configuration
14.2.2 Configuring GSMTAP tracing
14.2.3 Configuring power ramping

14.2.4 Running multiple instances,

15 Support for Dynamic Timeslots (TCH/F, TCH/H, PDCH)

16 OsmoBTS hardware support

17 osmo-bts-sysmo for sysmocom sysmoBTS

17.1 osmo-bts-sysmo specific command line arguments
17.2 osmo-bts-sysmo specific VIY commands
17.2.1 atthe SHOWnode

17.2.1.1 show trx 0 clock—-source

17.2.1.2 show trx 0 dsp-trace-flags

17.2.1.3 trx 0 dsp-trace-flag................
17.2.2 atthe ENABLEnode,
17.22.1 trx 0 tx-power <-110-100>............

17222 trx 0 rf-clock—-info reset

17223 trx 0 rf-clock-info correct

17.2.4 clock-calibration eeprom v
1725 clock-calibration default
17.2.6 clock-calibration <-4095-4095>
17.27 clock-source (tcxo|ocxo|ext|gps)o

17.2.8 trx-calibration-path PATH

17.3 osmo-Dbts-sysmo specific control interface commands

17.3.1 trx.O.clock-infoo

17.3.2 trx.0.clock-correction

17.2.3 atthe PHY instancenode

................... 29

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

DRAFT, unknown

OsmoBTS User Manual vi
18 osmo-bts—trx for OsmoTRX 36
18.1 osmo-bts-trxspecific VIY commands 36
18.1.1 atthe SHOW node i ittt e e e 36

18.1.1.1 show LransCeivers v v 36

18.1.2 atthe PHY configurationnode 0 i e e e e 36

18.1.2.1 osmotrx ip HOST v i v e e e e e e e e e e e e e e e e 36

18.1.2.2 osmotrx ip (local|remote) A.B.C.Dt i v i i i ittt 36

18.1.2.3 osmotrx base-port (local|remote) <0-65535> 37

18.1.2.4 osmotrx fn-advance <0-30> i i i it e 37

18.1.2.5 osmotrx rts-advance <0-30> o ittt e 37

18.1.2.6 osmotrx rx—gain <0-50> e e e e 37

18.1.2.7 osmotrx tx—attenuation <0-50> i 37

18.1.2.8 osmotrx tx-attenuation oml 37

18.1.3 atthe PHY Instance configurationnode L e 38

18.1.3.1 slotmask (1]0) (1]0) (110) (1]0) (110) (110) (110) (110) 38

18.1.3.2 osmotrx maxdly <0-=31> e e e e 38

19 osmo-bts—-octphy for Octasic OCTPHY-2G 38
20 osmo-bts-litecelll5 for Nutaq/Nuran LiteCell 1.5 38
20.1 osmo-bts-trxspecific VIY commands e 38
20.1.1 atthe SHOWnode i i i it e e e 38

20.1.1.1 show phy <0-255> system—information 38

20.1.1.2 show phy <0-255> rf-port-stats <0-1> 39

20.1.1.3 show phy <0-255> clk-sync-stats 39

20.1.2 atthe PHY configurationnode 39

20.1.2.1 octphy hw—addr HWADDR v v vttt it e e e e e e e e 39

20.1.2.2 octphy net-device NAME i vt i vttt e e 39

20.1.2.3 octphy rf-port-index <0-255> e 39

20.1.2.4 octphy rx—gain <0=73> e e e e e e e e 39

20.1.2.5 octphy tx—attenuation <0-359> e 39

21 osmo-bts-virtual for Virtual Um Interface 39
21.1 osmo-bts-virtual specific VTY commands e 40
21.1.1 atthe PHY confignode e e e e e e e 40

21.1.1.1 wvirtual-um net-device NETDEV i, 40

21.1.1.2 virtual-um ms-udp-port <0-65535> 40

21.1.1.3 virtual-um ms-multicast—group GROUP v v v i v, 40

21.1.14 virtual-um bts-udp-port <0-65535> 40

21.1.1.5 virtual-um bts-multicast—-group GROUP 40

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual vii

22 OsmoBTS software architecture 40
22.1 OsmoBTS PHY interface abstraction e 40
22.1.1 PHY Iink . . .o e e 40

22.1.2 PHY INSEANCE o o ot e e e e e e e e e e e e e e e 41

22.1.3 Mapping PHY instancesto TRXs o . 41

22.2 Internal control flow L L e e e 41
22.2.1 start-up / sequencing during OsmoBTS start 41

22.2.2 Attime of OML establishment 42

22.2.3 Attime of RSL connectionloss L 42

23 Osmux 42
23.1 Osmux and NAT e 42
232 CIDallocation v ittt e e e e e e e e e e e 43
23.3 3GPP AolP network setup with Osmux L e 44
23.4 SCCPLite network setup with OSmMux L L o e e e 46
23.5 SCCPLite network setup with Osmux + BSC-NAT e 48
23.6 Osmux and MGCP e 50
23.6.1 X-Osmux Format 50

23.6.2 X-Osmux Considerations e e e e 50

23.6.3 X=0Smux SUPPOTt . . . o v v v i e 51

2377 Abissetup with Osmux L L e e 51
23.8 Osmux Support in OsmoBTS e 52

24 QoS, DSCP/TOS, Priority and IEEE 802.1q PCP 53
24.1 TP Level (DSCP) e 53
24.2 Packet Priority o o e e e e e e e e 53
24.3 Ethernet Level (PCP) e e e 54
24.4 Putting things together e e e 55
24.4.1 Full example of QoS for osmo-bts uplink QoS 56

25 VTY Process and Thread management 57
25.1 Scheduling Policy e e 58
25.2 CPU-Affinity Mask e e 58

26 TRX Manager UDP socket interface 59
26.1 Indications on the Master Clock Interface L 60
26.2 TRXC protocol e 60
26.2.1 Power Control e 60

26.2.2 Tuning Control e e e e e e e e e 61

26.2.3 Training Sequence configuration L. L. o e 61

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual viii
26.2.4 Timeslot Control L e 61

26.2.4.1 Multiple Training Sequences (optional) oo 62

26.2.4.2 VAMOS enabled channel combinations (optional) 62

26.2.5 TRXD header version negotiation o v v it e e e e e e e e e e 65

26.3 TRXD protocol o o e e e e e 65
26.3.1 PDU VErsioning o i i i e e e e e e e e e e e 65

2632 Uplink PDU format e 66

26.3.2.1 Coding of MTS: Modulation and Training Sequence info 68

26.3.3 Downlink Data Burst L 69

26.3.4 PDUbatching e 71

26.3.5 Coding of VAMOS PDUS e 72

27 Osmocom Control Interface 73
27.1 Control Interface Protocol e 73
27.1.1 GET 0peration v vttt ittt e e e e e e e e 74

27.1.2 SEToperation it e e e e 75

27.1.3 TRAPOPEration v i i i e e e e e e e e e e e e e e e e e e e 75

27.2 Common variables 75
27.3 Control Interface python examples o e e e e e 76
27.3.1 Getting rate COUNETS« ¢« t vttt e ettt e e e e e e e e e e e e e 76

2732 Settingavalue e 76

2733 Gettingavalue e 77

27.3.4 Listening fortraps oL e e e 77

28 Glossary 77
A Osmocom TCP/UDP Port Numbers 85
B Bibliography / References 87
B.0.0.0.1 References. e 87

C GNU Free Documentation License 91
C.1 PREAMBLE 91
C.2 APPLICABILITY AND DEFINITIONS e e e s 91
C3 VERBATIM COPYING e e e e e s 92
C4 COPYINGINQUANTITY o e e e e e e e e 92
C.5 MODIFICATIONS o 93
C.6 COMBINING DOCUMENTS e e e e e s s 94
C.7 COLLECTIONS OF DOCUMENTS e e e e s 94
C.8 AGGREGATION WITH INDEPENDENT WORKS o . 94
C.9 TRANSLATION e e e e e e 95
Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual iX

C.10 TERMINATION e e e 95
C.11 FUTURE REVISIONS OF THISLICENSE s 95
C.12 RELICENSING L o 95
C.13 ADDENDUM: How to use this License for your documents 96

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 1/96

1 Foreword

Digital cellular networks based on the GSM specification were designed in the late 1980s and first deployed in the early 1990s
in Europe. Over the last 25 years, hundreds of networks were established globally and billions of subscribers have joined the
associated networks.

The technological foundation of GSM was based on multi-vendor interoperable standards, first created by government bodies
within CEPT, then handed over to ETSI, and now in the hands of 3GPP. Nevertheless, for the first 17 years of GSM technology,
the associated protocol stacks and network elements have only existed in proprietary black-box implementations and not as Free
Software.

In 2008 Dieter Spaar and I started to experiment with inexpensive end-of-life surplus Siemens GSM BTSs. We learned about the
A-bis protocol specifications, reviewed protocol traces and started to implement the BSC-side of the A-bis protocol as something
originally called bs11-abis. All of this was just for fun, in order to learn more and to boldly go where no Free Software
developer has gone before. The goal was to learn and to bring Free Software into a domain that despite its ubiquity, had not yet
seen any Free / Open Source software implementations.

bsll-abis quickly turned into bsc-hack, then OpenBSC and its OsmoNITB variant: A minimal implementation of all
the required functionality of an entire GSM network, exposing A-bis towards the BTS. The project attracted more interested
developers, and surprisingly quickly also commercial interest, contribution and adoption. This allowed adding support for more
BTS models.

After having implemented the network-side GSM protocol stack in 2008 and 2009, in 2010 the same group of people set out
to create a telephone-side implementation of the GSM protocol stack. This established the creation of the Osmocom umbrella
project, under which OpenBSC and the OsmocomBB projects were hosted.

Meanwhile, more interesting telecom standards were discovered and implemented, including TETRA professional mobile radio,
DECT cordless telephony, GMR satellite telephony, some SDR hardware, a SIM card protocol tracer and many others.

Increasing commercial interest particularly in the BSS and core network components has lead the way to 3G support in Osmocom,
as well as the split of the minimal OsmoNITB implementation into separate and fully featured network components: OsmoBSC,
OsmoMSC, OsmoHLR, OsmoMGW and OsmoSTP (among others), which allow seamless scaling from a simple "Network In
The Box" to a distributed installation for serious load.

It has been a most exciting ride during the last eight-odd years. I would not have wanted to miss it under any circumstances.

— Harald Welte, Osmocom.org and OpenBSC founder, December 2017.

1.1 Acknowledgements

My deep thanks to everyone who has contributed to Osmocom. The list of contributors is too long to mention here, but I'd like
to call out the following key individuals and organizations, in no particular order:

* Dieter Spaar for being the most amazing reverse engineer I’ve met in my career

* Holger Freyther for his many code contributions and for shouldering a lot of the maintenance work, setting up Jenkins - and
being crazy enough to co-start sysmocom as a company with me ;)

* Andreas Eversberg for taking care of Layer2 and Layer3 of OsmocomBB, and for his work on OsmoBTS and OsmoPCU
* Sylvain Munaut for always tackling the hardest problems, particularly when it comes closer to the physical layer

* Chaos Computer Club for providing us a chance to run real-world deployments with tens of thousands of subscribers every
year

* Bernd Schneider of Netzing AG for funding early ip.access nanoBTS support

* On-Waves ehf for being one of the early adopters of OpenBSC and funding a never ending list of features, fixes and general
improvement of pretty much all of our GSM network element implementations

* sysmocom, for hosting and funding a lot of Osmocom development, the annual Osmocom Developer Conference and releasing
this manual.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 2/96

e Jan Luebbe, Stefan Schmidt, Daniel Willmann, Pablo Neira, Nico Golde, Kevin Redon, Ingo Albrecht, Alexander Huemer,
Alexander Chemeris, Max Suraev, Tobias Engel, Jacob Erlbeck, Ivan Kluchnikov

* NLnet Foundation, for providing funding for a number of individual work items within the Osmocom universe, such as LTE
support in OsmoCBC or GPRS/EGPRS support for Ericsson RBS6000.

* WaveMobile Ltd, for many years of sponsoring.

May the source be with you!

— Harald Welte, Osmocom.org and OpenBSC founder, January 2016.

1.2 Endorsements

This version of the manual is endorsed by Harald Welte as the official version of the manual.

While the GFDL license (see Appendix C) permits anyone to create and distribute modified versions of this manual, such
modified versions must remove the above endorsement.

2 Preface

First of all, we appreciate your interest in Osmocom software.

Osmocom is a Free and Open Source Software (FOSS) community that develops and maintains a variety of software (and partially
also hardware) projects related to mobile communications.

Founded by people with decades of experience in community-driven FOSS projects like the Linux kernel, this community is built
on a strong belief in FOSS methodology, open standards and vendor neutrality.

2.1 FOSS lives by contribution!

If you are new to FOSS, please try to understand that this development model is not primarily about “free of cost to the GSM
network operator”, but it is about a collaborative, open development model. It is about sharing ideas and code, but also about
sharing the effort of software development and maintenance.

If your organization is benefiting from using Osmocom software, please consider ways how you can contribute back to that
community. Such contributions can be many-fold, for example

* sharing your experience about using the software on the public mailing lists, helping to establish best practises in using/oper-
ating it,

* providing qualified bug reports, workarounds

* sharing any modifications to the software you may have made, whether bug fixes or new features, even experimental ones

* providing review of patches

* testing new versions of the related software, either in its current “master” branch or even more experimental feature branches

* sharing your part of the maintenance and/or development work, either by donating developer resources or by (partially) funding
those people in the community who do.

We’re looking forward to receiving your contributions.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 3/96

2.2 Osmocom and sysmocom
Some of the founders of the Osmocom project have established sysmocom - systems for mobile communications GmbH as a
company to provide products and services related to Osmocom.

sysmocom and its staff have contributed by far the largest part of development and maintenance to the Osmocom mobile network
infrastructure projects.

As part of this work, sysmocom has also created the manual you are reading.

At sysmocom, we draw a clear line between what is the Osmocom FOSS project, and what is sysmocom as a commercial
entity. Under no circumstances does participation in the FOSS projects require any commercial relationship with sysmocom as a
company.

2.3 Corrections
We have prepared this manual in the hope that it will guide you through the process of installing, configuring and debugging your

deployment of cellular network infrastructure elements using Osmocom software. If you do find errors, typos and/or omissions,
or have any suggestions on missing topics, please do take the extra time and let us know.

2.4 Legal disclaimers

2.41 Spectrum License

As GSM and UMTS operate in licensed spectrum, please always double-check that you have all required licenses and that you
do not transmit on any ARFCN or UARFCN that is not explicitly allocated to you by the applicable regulatory authority in your
country.

(:) Warning
Depending on your jurisdiction, operating a radio transmitter without a proper license may be considered a felony under
criminal law!

2.4.2 Software License
The software developed by the Osmocom project and described in this manual is Free / Open Source Software (FOSS) and
subject to so-called copyleft licensing.

Copyleft licensing is a legal instrument to ensure that this software and any modifications, extensions or derivative versions will
always be publicly available to anyone, for any purpose, under the same terms as the original program as developed by Osmocom.

This means that you are free to use the software for whatever purpose, make copies and distribute them - just as long as you
ensure to always provide/release the complete and corresponding source code.

Every Osmocom software includes a file called COPYING in its source code repository which explains the details of the license.
The majority of programs is released under GNU Affero General Public License, Version 3 (AGPLv3).

If you have any questions about licensing, don’t hesitate to contact the Osmocom community. We’re more than happy to clarify
if your intended use case is compliant with the software licenses.

2.4.3 Trademarks
All trademarks, service marks, trade names, trade dress, product names and logos appearing in this manual are the property of
their respective owners. All rights not expressly granted herein are reserved.

For your convenience we have listed below some of the registered trademarks referenced herein. This is not a definitive or
complete list of the trademarks used.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 4/96

Osmocom® and OpenBSC® are registered trademarks of Holger Freyther and Harald Welte.
sysmocom® and sysmoBTS® are registered trademarks of sysmocom - systems for mobile communications GmbH.

ip.access® and nanoBTS® are registered trademarks of ip.access Ltd.

2.4.4 Liability

The software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the License text included with the
software for more details.

2.4.5 Documentation License

Please see Appendix C for further information.

3 Introduction

3.1 Required Skills
Please note that even while the capital expenses of running mobile networks has decreased significantly due to Osmocom software
and associated hardware like sysmoBTS, GSM networks are still primarily operated by large GSM operators.

Neither the GSM specification nor the GSM equipment was ever designed for networks to be installed and configured by anyone
but professional GSM engineers, specialized in their respective area like radio planning, radio access network, back-haul or core
network.

If you do not share an existing background in GSM network architecture and GSM protocols, correctly installing, configuring
and optimizing your GSM network will be tough, irrespective whether you use products with Osmocom software or those of
traditional telecom suppliers.

GSM knowledge has many different fields, from radio planning through site installation to core network configuration/adminis-
tration.

The detailed skills required will depend on the type of installation and/or deployment that you are planning, as well as its
associated network architecture. A small laboratory deployment for research at a university is something else than a rural
network for a given village with a handful of cells, which is again entirely different from an urban network in a dense city.

Some of the useful skills we recommend are:

 general understanding about RF propagation and path loss in order to estimate coverage of your cells and do RF network
planning.

 general understanding about GSM network architecture, its network elements and key transactions on the Layer 3 protocol
 general understanding about voice telephony, particularly those of ISDN heritage (Q.931 call control)

 understanding of GNU/Linux system administration and working on the shell

¢ understanding of TCP/IP networks and network administration, including tcpdump, tshark, wireshark protocol analyzers.

* ability to work with text based configuration files and command-line based interfaces such as the VTY of the Osmocom
network elements

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 5/96

3.2 Getting assistance
If you do have a support package / contract with sysmocom (or want to get one), please contact support@sysmocom.de with any
issues you may have.

If you don’t have a support package / contract, you have the option of using the resources put together by the Osmocom commu-
nity at https://projects.osmocom.org/, checking out the wiki and the mailing-list for community-based assistance. Please always
remember, though: The community has no obligation to help you, and you should address your requests politely to them. The
information (and software) provided at osmocom.org is put together by volunteers for free. Treat them like a friend whom you’re
asking for help, not like a supplier from whom you have bought a service.

If you would like to obtain professional/commercial support on Osmocom CNI, you can always reach out to sales @sysmocom.de
to discuss your support needs. Purchasing support from sysmocom helps to cover the ongoing maintenance of the Osmocom
CNI software stack.

4 Overview

4.1 About this manual

This manual should help you getting started with the OsmoBTS software. It will cover aspects of configuring and running
OsmoBTS as well as some introduction about its internal architecture and external interfaces.

4.2 About OsmoBTS

OsmoBTS is an implementation of a GSM BTS (Base Transceiver Station). A BTS serves as the interface between the Um radio
interface towards phones and the wired Abis interface towards the BSC (Base Station Controller). It also implements the network
side of the Layer 2 of the Um radio interface: The LAPDm protocol.

OsmoBTS is licensed as Free and Open Source Software (FOSS) under GNU AGPLv3 [gnu-agplv3]. It is developed as one GSM
network infrastructure component part of the overall Osmocom project.

As perhaps the first implementation of a GSM BTS ever in the industry, OsmoBTS is implemented in a vendor-independent way
and supports a large variety of transceiver hardware and physical layer implementations from many vendors.

4.3 Credits

OsmoBTS was originally developed in 2011 by Andreas Eversberg and Harald Welte. It has since been maintained by Harald
Welte and Holger Freyther at sysmocom.

4.4 OsmoBTS in the Osmocom GSM network architecture

OsmoBTS can be used in combination with the various other GSM network elements developed under the umbrella of the
Osmocom project.

Typical configurations either use OsmoBTS with OsmoBSC, or with OsmoNITB, as can be seen in the following figures.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

mailto:support@sysmocom.de
https://projects.osmocom.org/
mailto:sales@sysmocom.de

OsmoBTS User Manual 6/96

OsmoBTS
OsmoBTS

Abis

OsmoBSC

Figure 1: Classic GSM architecture using OsmoBTS with OsmoBTS components

OsmoBTS
OsmoBTS

@ OsmoNITB

Figure 2: GSM architecture using OsmoBTS + OsmoNITB

If intended by the user, it is of course also possible to implement an OsmoBTS-compatible Abis-over-IP interface in any third
party BSC. The Abis/IP interface and its protocol are documented in the OsmoBTS Abis Protocol Specification [osmobts-abis-
spec]. However, be advised that such a configuration is currently not officially supported by Osmocom.

5 Abis/IP Interface

5.1 A-bis Operation & Maintenance Link

The GSM Operation & Maintenance Link (OML) is specified in 3GPP TS 12.21 and is used between a GSM Base-Transceiver-
Station (BTS) and a GSM Base-Station-Controller (BSC). The default TCP port for OML is 3002. The connection will be opened
from the BTS to the BSC.

Abis OML is only specified over El interfaces. The Abis/IP implementation of OsmoBTS and OsmoBSC extend and/or deviate
from the TS 12.21 specification in several ways. Please see the OsmoBTS Abis Protocol Specification [osmobts-abis-spec] for
more information.

5.2 A-bis Radio Signalling Link

The GSM Radio Signalling Link (RSL) is specified in 3GPP TS 08.58 and is used between a GSM Base-Transceiver-Station and
a GSM Base-Station-Controller (BSC). The default TCP port for RSL is 3003. The connection will be opened from the BTS to
BSC after it has been instructed by the BSC.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 7 /96

Abis RSL is only specified over El interfaces. The Abis/IP implementation of OsmoBTS and OsmoBSC extend and/or deviate
from the TS 08.58 specification in several ways. Please see the OsmoBTS Abis Protocol Specification [osmobts-abis-spec] for
more information.

5.3 Locate Abis/IP based BTS

We can use a tool called abisip-find to be able to find BTS which is connected in the network. This tool is located in the OsmoBSC
project repository under: ./src/ipaccess

5.3.1 abisip-find
abisip-find is a small command line tool which is used to search and find BTS devices in your network (e.g. sysmoBTS,
nanoBTS).

It uses broadcast packets of the UDP variant of the Abis-IP protocol on port 3006, and thus will find any BTS that can be reached
by the all-network broadcast address 255.255.255.255

When program is started it will print one line for each BTS it can find.
Example: using abisip-find to find BTS in your network

S ./abisip-find
abisip-find (C) 2009 by Harald Welte
This is FREE SOFTWARE with ABSOLUTELY NO WARRANTY

you might need to specify the outgoing
network interface, e.g. "““abisip-find ethO0""

Trying to find ip.access BTS by broadcast UDP...

MAC_Address='24:62:78:01:02:03"' IP_Address='192.168.0.171"'" Serial Number='123"
Unit_ID='sysmoBTS 1002"'

MAC_Address='24:62:78:04:05:06"' IP_Address='192.168.0.182"' Serial Number='456"
Unit_ID='sysmoBTS 1002"'

MAC Address='00:01:02:03:04:05" IP Address='192.168.100.123"' Unit ID='65535/0/0"
Location_1="'"' Location 2='BTS_NBT131G' Equipment Version='165a029_55"'

Software Version='168a302_v142b13d0' Unit Name='nbts-00-02-95-00-4E-B3"'

Serial Number='00123456"

~C

You may have to start the program as a root:

$ sudo ./abisip-find ethO

5.4 Deploying a new nanoBTS

A tool called ipaccess-config can be used to configure a new ip.access nanoBTS.

5.4.1 ipaccess-config

This program is very helpful tool which is used to configure Unit ID and Primary OML IP. You can find this tool in the OsmoBSC
repository under: ./src/ipaccess

Example: using ipaccess-config to configure Unit ID and Primary OML IP of nanoBTS

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 8/96

$./ipaccess-config -u 1801/0/0@ 10.9.1.195@ -0 10.9.1.154©

ipaccess-config (C) 2009-2010 by Harald Welte and others
This is FREE SOFTWARE with ABSOLUTELY NO WARRANTY

Trying to connect to ip.access BTS

abis_nm.c:316 OC=SITE-MANAGER (00) INST=(ff,ff,ff) STATE CHG:
OP_STATE=Disabled AVAIL=Not installed(07)

abis_nm.c:316 OC=BTS(01) INST=(00,ff,ff) STATE CHG:
OP_STATE=Disabled AVAIL=Not installed(07) ADM=Locked
abis_nm.c:316 OC=BASEBAND-TRANSCEIVER(04) INST=(00,00,ff) STATE CHG:
OP_STATE=Disabled AVAIL=Not installed(07) ADM=Locked

OML link established using TRX 0

setting Unit ID to '1801/0/0'

setting primary OML link IP to '10.9.1.154"

abis_nm.c:316 OC=CHANNEL (03) INST=(00,00,00) STATE CHG:
OP_STATE=Disabled AVAIL=Not installed(07) ADM=Locked

abis_nm.c:2433 OC=BASEBAND-TRANSCEIVER (04) INST=(00,00,ff) IPACCESS (0xf0):

SET NVATTR ACK
Set the NV Attributes.

(1] Unit ID
(2] IP address of the NITB

IP address of the nanoBTS

6 OsmoBTS Interfaces

OsmoBTS offers a set of interfaces to interact with external entities:

¢ A-bis/IP interface to talk to the BSC

* bts_model specific PHY interface

VTY interface

¢ Osmocom control interface

GSMTAP interface

PCU interface

6.1 OsmoBTS Abis/IP Interface

OsmoBTS implements the GSM A-bis interface as described in the relevant 3GPP specifications:

¢ A-bis RSL according to 3GPP TS 08.58
¢ A-bis OML according to 3GPP TS 12.21

As the 3GPP specifies A-bis only over El interfaces and not over IP, significant enhancements and modifications to the 3GPP
specifications are employed. Nevertheless, the implementation tries to stay as close as possible to the 3GPP specifications.

Please see the OsmoBTS Abis Protocol Specification [osmobts-abis-spec] for more information on this subject.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 9/96

6.2 bts_model specific PHY interface
This interface is specific to the bts_model that OsmoBTS was compiled for. It can take any form as required by the respective
hardware.

Please see the PHY documentation of your respective BTS hardware for more details.

6.3 OsmoBTS VTY Interface

See Section 12 for further information.

6.4 OsmoBTS Control Interface

The general structure of the Osmocom control interface is described in Section 27.

The number of control interface commands/attributes is currently quite limited and largely depends on the bts_model used.

6.4.1 trx.N.thermal-attenuation

The idea of this parameter is to attenuate the system output power as part of thermal management. In some cases the PA might
be passing a critical level, so an external control process can use this attribute to reduce the system output power.

Please note that all values in the context of transmit power calculation are integers in milli-dB (1/10000 bel), so the below
example is setting the attenuation at 3 dB:

bsc_control.py -d localhost -p 4238 -s trx.0O.thermal-attenuation 3000
Got message: SET_REPLY 1 trx.0.thermal-attenuation 3000

bsc_control.py -d localhost -p 4238 -g trx.0.thermal-attenuation
Got message: GET_REPLY 1 trx.0.thermal-attenuation 3000

6.5 OsmoBTS GSMTAP Interface

GSMTAP is a standard created by Osmocom to UDP-encapsulate GSM protocol messages normally communicated over non-IP
interfaces for the primary purpose of protocol analysis in the wireshark dissector.

The initial purpose was to encapsulate GSM Um frames including some meta-data like ARFCN and GSM frame number into
something that can be parsed and dispatched within the wireshark dissector.

This interface has since been extended to many other GSM/GPRS/UMTS interfaces and protocols, and even to TETRA and
GMR.

In OsmoBTS, it is possible to export both uplink and downlink Um messages via GSMTAP. There is a set of VTY configuration
options to specify for which logical channels of the Um interface GSMTAP messages shall be emitted, and to which destination
IP address they shall be sent.

Using GSMTAP it is possible to place a virtual tap at the air interface between BTS and MS, without going through the trouble
of setting up an actual radio receiver at the same frequencies. Also, GSMTAP export is performed before the Um air-interface
encryption (AS5) is performed, so all frames are always in plain text.

Please refer to Section 14.2.2 for more information on how to configure and use this interface.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 10/96

6.6 OsmoBTS PCU Socket Interface

In order to assist the provisioning of GPRS services over the same radio interface as circuit-switched GSM, OsmoBTS exposes
a Unix domain socket based interface towards OsmoPCU.

OsmoPCU is the Osmocom implementation of the GPRS Packet Control Unit (PCU), which is co-located with the BTS in the
Osmocom implementation. Contrary to that, many classic E1-based implementations of the GSM RAN co-locate the PCU with
the BSC. However, the GSM specifications keep the location up to the implementor.

The GPRS network architecture is shown in Figure 3.

Figure 3: GPRS network architecture

The PCU socket interface serves the following purposes:

* to pass PCU relevant configuration from BTS to PCU
* to forward paging requests from BTS to PCU
* to forward RACH Requests from BTS to PCU

Depending on your bts_model, the PCU may also be passing actual PH-DATA .request / PH-DATA .indication / PH-RTS.indication
primitives for the PDCH. This is considered sub-optimal, and some BTS models offer a direct interface by which the PCU can
exchange those primitives directly with the PHY.

The default PCU socket interface name is /tmp/pcu_sock, but this can be overridden by the pcu-socket VTY command
in the BTS configuration VTY node.

7 Control interface

The actual protocol is described in Section 27, the variables common to all programs using it are described in Section 27.2. Here
we describe variables specific to OsmoBTS. The commands starting with prefix "net.btsN." are specific to a certain BTS so N
have to be replaced with BTS number when issuing command. Similarly the TRX-specific commands are additionally prefixed
with TRX number e. g. "net.bts1.trx2.thermal-attenuation".

Table 1: Variables available over control interface

Name Acces§ Trap | Value Comment
net.btsN.trxM.thermal-| RW No integer See Section 7.1 for
attenuation details.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 11/96

7.1 thermal-attenuation

Allowed SET value for thermal attenuation is between 0 to 40 dB. Note: the value is SET in dB units but GET will return value
in mdB units used internally.

8 Osmocom Counters

The following gives an overview of all the types of counters available:

8.1 Osmo Counters (deprecated)

Osmo counters are the oldest type of counters added to Osmocom projects. They are not grouped.

* Printed as part of VTY show stats
¢ Increment, Decrement

* Accessible through the control interface: counter.<counter_name>

8.2 Rate Counters

Rate counters count rates of events.

* Printed as part of VTY show stats

* Intervals: per second, minute, hour, day or absolute value
* Increment only

* Accessible through the control interface

* Rate counters are grouped and different instances per group can exist

The control interface command to get a counter (group) is:
rate_ctr.per_{sec,min,hour,day,abs }.<group_name>.<idx>.[counter_name]

It is possible to get all counters in a group by omitting the counter name

8.3 Stat ltem
Stat items are a grouped replacement for osmo counters.

* Printed as part of VTY show stats

* Replacement for osmo counters

* Not yet available through the control interface
* Grouped and indexed like rate counters

¢ Items have a unit

» Keeps a list of the last values measured, so could return an average, min, max, std. deviation. So far this is not implemented in
any of the reporting options.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 12/96

8.4 Statistic Levels

There are three levels on which a statistic can be aggregated in Osmocom projects: globally, per-peer and per-subscriber.

8.4.1 Gilobal

These are global statistics.

8.4.2 Peer

These statistics relate to a peer the program connects to such as the NSVC in an SGSN.

This level also includes reporting global statistics.

8.4.3 Subscriber

These statistics are related to an individual mobile subscriber. An example would be bytes transferred in an SGSN PDP context.
This level also includes global and peer-based statistics.

8.5 Stats Reporter

The stats reporter periodically collects osmo counter, rate counter and stat item values and sends them to a backend. Currently
implemented are outputting to the configured log targets and a statsd connector.

8.5.1 Configuring a stats reporter

Periodically printing the statistics to the log can be done in the following way:

Example 8.1 Log statistics

OsmoBSC> enable

OsmoBSC# configure terminal

OsmoBSC (config) # stats interval 60 (1
OsmoBSC (config) # stats reporter log ©
OsmoBSC (config-stats)# level global (3
OsmoBSC (config-stats)# enable 0

The interval determines how often the statistics are reported.
Write the statistic information to any configured log target.

Report only global statistics (can be global, peer, or subscriber).

Enable the reporter, disable will disable it again.

The counter values can also be sent to any aggregation/visualization tool that understands the statsd format, for example a statsd
server with graphite or prometheus using the statsd_exporter together with grafana.

The statsd format is specified in https://github.com/b/statsd_spec

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

https://github.com/b/statsd_spec

OsmoBTS User Manual 13/96

Example 8.2 Report statistics to statsd

OsmoBSC> enable

OsmoBSC# configure terminal

OsmoBSC (config) # stats interval 10

OsmoBSC (config) # stats reporter statsd ©
OsmoBSC (config-stats)# prefix BSCl @
OsmoBSC (config-stats)# level subscriber ©
OsmoBSC (config-stats) # remote-ip 1.2.3.4 O
OsmoBSC (config-stats)# remote-port 8125 (5]
OsmoBSC (config-stats)# enable

Configure the statsd reporter.
Prefix the reported statistics. This is useful to distinguish statistics from multiple instances of the same service.
Report only global statistics or include peer or subscriber statistics as well.

IP address of the statsd server.

UDP port of the statsd server. Statsd by default listens to port 8125.

You can use Netdata (https://learn.netdata.cloud/) as a statsd server which does not require special configuration to show rate
counters. By default all the rate counters will be exposed to the StatsD plugin (listening on 127.0.0.1:8125) and displayed on the
Netdata dashboard available via: http://localhost: 19999 The list of available charts which includes all the rate counters reported
via statsD is available through: http://localhost:19999/api/v 1/charts

8.6 Socket stats

libosmocore provides features to monitor the status of TCP connections. This can be a helpful source of information when the
links between network components are unreliable (e.g. satellite link between BTS and BSC).

Note
This feature is only available for certain types of TCP connections. At the moment only RSL/OML connections between
OsmoBSC and the connected BTSs can be monitored.

8.6.1 Configuration

The gathering of the TCP connection statistics is done via syscalls. This has to be taken into account for the configuration.
Since syscalls are rather expensive and time consuming the overall performance of the application may suffer when many TCP
connections are present. This may be the case for BSCs with a large number of BTSs connected to it.

The statistics are gathered in batches per interval. A batch size of 5 would mean that only 5 TCP connections per interval are
evaluated and the next 5 connections in the next interval and so on.

It is recommended to choose a large reporting interval and a reasonable small batch size to distribute the syscall load as even as
possible.

Example 8.3 Report statistics to statsd

OsmoBSC> enable

OsmoBSC# configure terminal
stats—tcp interval 10 ©
stats-tcp batch-size 5 ©

] Set the gathering interval (sec.)

(2] Set how many TCP sockets statistics to gather per interval.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

https://learn.netdata.cloud/
http://localhost:19999
http://localhost:19999/api/v1/charts

OsmoBTS User Manual

14 /96

8.6.2 Generated stats items

Name Description

tcp:unacked unacknowledged packets.

tep:lost unacknowledged packets.

tcp:retrans lost packets.

tepirtt retransmitted packets.

tepirev_rtt roundtrip-time (receive).
tcp:notsent_bytes bytes not yet sent.

tep:rwnd_limited time (usec) limited by receive window.
tcp:sndbuf_limited Time (usec) limited by send buffer.
tcp:reord_seen reordering events seen.

The item group index is the file descriptor number. The item group name consists of a static prefix (e.g. "ipa-rsl"), followed by

the TP addresses and ports of both peers.

Example 8.4 VTY output of a stats item group of a TCP connection

stats tcp (15) ('ipa-rsl,r=10.9.1.143:38455<->1=10.9.1.162:3003") :
unacknowledged packets: 0

lost packets: 0

retransmitted packets: 0

roundtrip-time: 583

roundtrip-time (receive): 0

bytes not yet sent: 0

time (usec) limited by receive window: 0

Time (usec) limited by send buffer: 0

reordering events seen: 0

9 Counters

These counters and their description based on OsmoBTS 0.8.1.346-33ed (OsmoBTS).

9.1 Rate Counters

Table 2: elinp - E1 Input subsystem

Name Reference Description
hdlc:abort [HDLC abort
hdlc:bad_fcs [?] HLDC Bad FCS
hdlc:overrun [?] HDLC Overrun
alarm [?7] Alarm

removed [?7] Line removed

Table 3: cbch - cell broadcast channel

Name Reference Description
cbchirevd_queued [7] Received + queued CBCH messages
(Abis)

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

DRAFT, unknown

OsmoBTS User Manual 15/96

Table 3: (continued)

Name Reference Description

cbch:revd_dropped [7] Received + dropped CBCH messages
(Abis)

cbch:sent_single [7] Sent single CBCH messages (Um)

cbch:sent_default [7] Sent default CBCH messages (Um)

cbch:sent_null [?] Sent NULL CBCH messages (Um)

Table 4: cbch - cell broadcast channel

Name Reference Description

cbeh:revd_queued [?] Received + queued CBCH messages
(Abis)

cbch:revd_dropped [7] Received + dropped CBCH messages
(Abis)

cbch:sent_single [?] Sent single CBCH messages (Um)

cbch:sent_default [?7] Sent default CBCH messages (Um)

cbch:sent_null [?7] Sent NULL CBCH messages (Um)

Table 5: bts - base transceiver station

Name Reference Description

paging:rcvd [7] Received paging requests (Abis)
paging:drop [7] Dropped paging requests (Abis)
paging:sent [7] Sent paging requests (Um)
rach:rcvd [?7] Received RACH requests (Um)
rach:drop [7] Dropped RACH requests (Um)
rach:handover [7] Received RACH requests (Handover)
rach:cs [7] Received RACH requests (CS/Abis)
rach:ps [?] Received RACH requests (PS/PCU)
agch:rcvd [7] Received AGCH requests (Abis)
agch:sent [?] Sent AGCH requests (Abis)
agch:delete [7] Sent AGCH DELETE IND (Abis)

10 Osmo Stat ltems

11 Osmo Counters

12 The Osmocom VTY Interface

All human interaction with Osmocom software is typically performed via an interactive command-line interface called the VTY.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 16 /96

Note

Integration of your programs and scripts should not be done via the telnet VTY interface, which is intended for human interaction
only: the VTY responses may arbitrarily change in ways obvious to humans, while your scripts’ parsing will likely break often.
For external software to interact with Osmocom programs (besides using the dedicated protocols), it is strongly recommended
to use the Control interface instead of the VTY, and to actively request / implement the Control interface commands as required
for your use case.

The interactive telnet VTY is used to

* explore the current status of the system, including its configuration parameters, but also to view run-time state and statistics,
* review the currently active (running) configuration,

* perform interactive changes to the configuration (for those items that do not require a program restart),

* store the current running configuration to the config file,

* enable or disable logging; to the VTY itself or to other targets.

The Virtual Tele Type (VTY) has the concept of nodes and commands. Each command has a name and arguments. The name
may contain a space to group several similar commands into a specific group. The arguments can be a single word, a string,
numbers, ranges or a list of options. The available commands depend on the current node. there are various keyboard shortcuts
to ease finding commands and the possible argument values.

Configuration file parsing during program start is actually performed the VITY’s CONFIG node, which is also available in the
telnet VTY. Apart from that, the telnet VTY features various interactive commands to query and instruct a running Osmocom
program. A main difference is that during config file parsing, consistent indenting of parent vs. child nodes is required, while the
interactive VTY ignores indenting and relies on the exif command to return to a parent node.

Note

In the CONFIG node, it is not well documented which commands take immediate effect without requiring a program restart.
To save your current config with changes you may have made, you may use the write file command to overwrite your
config file with the current configuration, after which you should be able to restart the program with all changes taking effect.

This chapter explains most of the common nodes and commands. A more detailed list is available in various programs’ VTY
reference manuals, e.g. see [vty-ref-osmomsc].

There are common patterns for the parameters, these include IPv4 addresses, number ranges, a word, a line of text and choice.
The following will explain the commonly used syntactical patterns:

Table 6: VTY Parameter Patterns

Pattern Example Explanation

A.B.C.D 127.0.0.1 An IPv4 address

A.B.C.D/M 192.168.1.0/24 An IPv4 address and mask

X:X::X:X ::1 An IPv6 address

X:X::X:X/M ::1/128 An IPv6 address and mask

TEXT example0l A single string without any spaces, tabs
.TEXT Some information A line of text
(OptionA|OptionB|OptionC) OptionA A choice between a list of available options
<0-10> 5 A number from a range

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 17 /96

12.1 Accessing the telnet VTY

The VTY of a given Osmocom program is implemented as a telnet server, listening to a specific TCP port.

Please see Appendix A to check for the default TCP port number of the VTY interface of the specific Osmocom software you
would like to connect to.

As telnet is insecure and offers neither strong authentication nor encryption, the VTY by default only binds to localhost
(127.0.0.1) and will thus not be reachable by other hosts on the network.

Warning

@ By default, any user with access to the machine running the Osmocom software will be able to connect to the VTY. We
assume that such systems are single-user systems, and anyone with local access to the system also is authorized to
access the VTY. If you require stronger security, you may consider using the packet filter of your operating system to
restrict access to the Osmocom VTY ports further.

12.2 VTY Nodes

The VTY by default has the following minimal nodes:

VIEW
When connecting to a telnet VTY, you will be on the VIEW node. As its name implies, it can only be used to view the
system status, but it does not provide commands to alter the system state or configuration. As long as you are in the
non-privileged VIEW node, your prompt will end in a > character.

ENABLE
The ENABLE node is entered by the enable command, from the VIEW node. Changing into the ENABLE node will
unlock all kinds of commands that allow you to alter the system state or perform any other change to it. The ENABLE node
and its children are signified by a # character at the end of your prompt.
You can change back from the ENABLE node to the VIEW node by using the disable command.

CONFIG
The CONFIG node is entered by the configure terminal command from the ENABLE node. The config node is
used to change the run-time configuration parameters of the system. The prompt will indicate that you are in the config
node by a (config) # prompt suffix.
You can always leave the CONFIG node or any of its children by using the end command.
This node is also automatically entered at the time the configuration file is read. All configuration file lines are processed
as if they were entered from the VTY CONFIG node at start-up.

Other
Depending on the specific Osmocom program you are running, there will be few or more other nodes, typically below the
CONFIG node. For example, the OsmoBSC has nodes for each BTS, and within the BTS node one for each TRX, and
within the TRX node one for each Timeslot.

12.3 Interactive help

The VTY features an interactive help system, designed to help you to efficiently navigate is commands.

Note

The VTY is present on most Osmocom GSM/UMTS/GPRS software, thus this chapter is present in all the relevant manuals.
The detailed examples below assume you are executing them on the OsmoMSC VTY. They will work in similar fashion on the
other VTY interfaces, while the node structure will differ in each program.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 18 /96

12.3.1 The question-mark (?) command

If you type a single 2 at the prompt, the VTY will display possible completions at the exact location of your currently entered
command.

If you type ? at an otherwise empty command (without having entered even only a partial command), you will get a list of the
first word of all possible commands available at this node:

Example: Typing ? at start of OsmoMSC prompt

OsmoMSC> @

show Show running system information

list Print command list

exit Exit current mode and down to previous mode
help Description of the interactive help system
enable Turn on privileged mode command

terminal Set terminal line parameters

who Display who is on vty

logging Configure logging

no Negate a command or set its defaults

sms SMS related commands

subscriber Operations on a Subscriber

o Type ? here at the prompt, the ? itself will not be printed.

If you have already entered a partial command, ? will help you to review possible options of how to continue the command.
Let’s say you remember that show is used to investigate the system status, but you don’t remember the exact name of the object.
Hitting 2 after typing show will help out:

Example: Typing ? after a partial command

OsmoMSC> show @

version Displays program version
online-help Online help
history Display the session command history
cs’7 ITU-T Signaling System 7
logging Show current logging configuration
alarms Show current logging configuration
talloc—-context Show talloc memory hierarchy
stats Show statistical values
asciidoc Asciidoc generation
rate—-counters Show all rate counters
fsm Show information about finite state machines
fsm-instances Show information about finite state machine instances
sgs—-connections Show SGs interface connections / MMEs
subscriber Operations on a Subscriber
bsc BSC
connection Subscriber Connections
transaction Transactions
statistics Display network statistics
sms—queue Display SMSqueue statistics
smpp SMPP Interface
o Type ? after the show command, the ? itself will not be printed.

You may pick the bsc object and type ? again:
Example: Typing ? after show bsc

OsmoMSC> show bsc
<cr>

By presenting <cr> as the only option, the VTY tells you that your command is complete without any remaining arguments
being available, and that you should hit enter, a.k.a. "carriage return".

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 19/96

12.3.2 TAB completion

The VTY supports tab (tabulator) completion. Simply type any partial command and press <t ab>, and it will either show you a
list of possible expansions, or completes the command if there’s only one choice.

Example: Use of <tab> pressed after typing only s as command

OsmoMSC> s@
show sms subscriber

o Type <tab> here.

At this point, you may choose show, and then press <t ab> again:
Example: Use of <tab> pressed after typing show command

OsmoMSC> show @

version online-help history cs’7 logging alarms
talloc-context stats asciidoc rate-counters fsm fsm-instances
sgs—connections subscriber bsc connection transaction statistics

sms—queue smpp

(1] Type <tab> here.

12.3.3 The 1list command

The 1ist command will give you a full list of all commands and their arguments available at the current node:
Example: Typing list at start of OsmoMSC VIEW node prompt

OsmoMSC> list
show version
show online-help
list
exit
help
enable
terminal length <0-512>
terminal no length
who
show history
show c¢cs7 instance <0-15> users
show c¢cs7 (sua|m3ualipa) [<0-65534>]
show cs7 instance <0-15> asp
show cs7 instance <0-15> as (activelall|m3ualsua)
show c¢cs7 instance <0-15> sccp addressbook
show cs7 instance <0-15> sccp users
show cs7 instance <0-15> sccp ssn <0-65535>
show c¢cs7 instance <0-15> sccp connections
show cs7 instance <0-15> sccp timers
logging enable
logging disable
logging filter all (0]1)
logging color (0]1)
logging timestamp (0]1)
logging print extended-timestamp (0]1)
logging print category (0]1)
logging print category-hex (0]1)
logging print level (0]1)
logging print file (0|1l |basename) [last]

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 20/96
logging set-log-mask MASK
logging level (rll|cc|mm|rr|mncc|pag|msc|mgcplho|db|ref|ctrl|smpp|ranap|vlr|iucs|bssap|

sgs|lglobal|llapd|linp|lmux|lmi|lmib|lsms|lctrl|lgtp|lstats|lgsup|loap|lss7|lsccp]|lsua <«

| lm3ua|lmgcp|ljibuf|lrspro)
logging level set-all
logging level force-all
no logging level force-all

show logging vty
show alarms
show talloc-context (application|all)

talloc-context
talloc-context
stats

stats level (global|peer|subscriber)
asciidoc counters

rate—-counters

fsm NAME

fsm all

fsm-instances NAME

fsm-instances all

sgs—connections

subscriber

show
show
show
show
show
show
show
show
show
show
show
show
show
show
show connection
show transaction
sms send pending
sms delete expired
subscriber create imsi ID
subscriber (msisdn|extension|imsi|tmsi|id)
SENDER_ID send .LINE

(applicationlfall)
(applicationlfall)

subscriber cache
bsc

subscriber (msisdn|extension|imsi|tmsi|id)
tmsi|id) SENDER_ID send .LINE
subscriber (msisdn|extension|imsi|tmsi|id)
subscriber (msisdn|extension|imsi|tmsi|id)
subscriber (msisdn|extension|imsi|tmsi|id)
subscriber (msisdn|extension|imsi|tmsi|id)
subscriber (msisdn|extension|imsi|tmsi|id)
subscriber (msisdn|extension|imsi|tmsi|id)

show statistics
show sms—-queue
logging filter imsi IMSI
show smpp esme

(msisdn|extension|imsi|tmsi|id)

ID

ID

ID
ID
ID
ID
ID
ID

(debug|info|noticel|error|fatal)
(debug|info|noticel|error|fatal)
(debug|info|noticel|error|fatal)

(full |brief |DEPTH)
(full |brief |DEPTH) tree ADDRESS
(full |brief |DEPTH)

filter REGEXP

ID

sms sender (msisdn|extension|imsi|tmsi]|id) —

silent-sms sender (msisdn|extension|imsi| <
silent-call start
silent-call stop
ussd-notify (0|1]2)
ms—test close-loop
ms—-test open-loop

paging

(any|tch/f|tch/any|sdcch)

.TEXT
(alblcldlelfli)

Tip

Remember, the list of available commands will change significantly depending on the Osmocom program you are accessing,
its software version and the current node you're at. Compare the above example of the OsmoMSC VIEW node with the list of

the OsmoMSC NETWORK config node:

Example: Typing list at start of OsmoMSC NETWORK config node prompt

OsmoMSC (config-net) # list
help
list
write
write
write

terminal

file

memory

write

show running-config

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

DRAFT, unknown

OsmoBTS User Manual 21/96

exit

end

network country code <1-999>

mobile network code <0-999>

short name NAME

long name NAME

encryption a5 <0-3> [<0-3>] [<0-3>] [<0-3>]
authentication (optional|required)

rrlp mode (none|ms-based|ms-preferred|ass-preferred)
mm info (0|1)

timezone <-19-19> (0|15]30/45)

timezone <-19-19> (0|15]30/45) <0-2>

no timezone

periodic location update <6-1530>

no periodic location update

12.3.4 The attribute system

The VTY allows to edit the configuration at runtime. For many VTY commands the configuration change is immediately valid
but for some commands a change becomes valid on a certain event only. In some cases it is even necessary to restart the whole
process.

To give the user an overview, which configuration change applies when, the VTY implemets a system of attribute flags, which
can be displayed using the show command with the parameter vty—attributes

Example: Typing show vty-attributes at the VI'Y prompt

OsmoBSC> show vty-attributes

Global attributes:
~ This command is hidden (check expert mode)
! This command applies immediately
@ This command applies on VTIY node exit

Library specific attributes:
A This command applies on ASP restart
I This command applies on IPA link establishment
L This command applies on E1l line update

Application specific attributes:
o This command applies on A-bis OML link (re)establishment
r This command applies on A-bis RSL link (re)establishment
1 This command applies for newly created lchans

The attributes are symbolized through a single ASCII letter (flag) and do exist in three levels. This is more or less due to the
technical aspects of the VTY implementation. For the user, the level of an attribute has only informative purpose.

The global attributes, which can be found under the same attribute letter in every osmocom application, exist on the top level.
The Library specific attributes below are used in various osmocom libraries. Like with the global attributes the attribute flag
letter stays the same throughout every osmocom application here as well. On the third level one can find the application specific
attributes. Those are unique to each osmocom application and the attribute letters may have different meanings in different
osmocom applications. To make the user more aware of this, lowercase letters were used as attribute flags.

The 1ist command with the parameter with-flags displays a list of available commands on the current VT'Y node, along
with attribute columns on the left side. Those columns contain the attribute flag letters to indicate to the user how the command
behaves in terms of how and when the configuration change takes effect.

Example: Typing list with-flags at the VTY prompt

OsmoBSC (config-net-bts)# list with-flags
help
list [with-flags]
show vty-attributes
show vty-attributes (application|library|global)

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 22 /96

write terminal
write file [PATH]
write memory

write
show running-config @
exit
end
0.. type (unknown|bsll|nanobts|rbs2000|nokia_site]|sysmobts) (2

description .TEXT
... no description
o.. band BAND
cell_identity <0-65535> ©
dtx uplink [force]
dtx downlink
no dtx uplink
no dtx downlink
location_area_code <0-65535>
base_station_id_code <0-63>
ipa unit-id <0-65534> <0-255>
ipa rsl-ip A.B.C.D
nokia_site skip-reset (0]1)
! ... nokia_site no-local-rel-conf (0|1) O
! ... nokia_site bts-reset-timer <15-100> ©

KRB R KRR

O O O O -

o This command has no attributes assigned.
2] This command applies on A-bis OML link (re)establishment.
(3] This command applies on A-bis RSL link (re)establishment.

0, ©® This command applies immediately.

There are multiple columns because a single command may be associated with multiple attributes at the same time. To improve

non

readability each flag letter gets a dedicated column. Empty spaces in the column are marked with a dot (".")

In some cases the listing will contain commands that are associated with no flags at all. Those commands either play an excep-
tional role (interactive commands outside "configure terminal”, vty node navigation commands, commands to show / write the
config file) or will require a full restart of the overall process to take effect.

12.3.5 The expert mode

Some VTY commands are considered relatively dangerous if used in production operation, so the general approach is to hide
them. This means that they don’t show up anywhere but the source code, but can still be executed. On the one hand, this approach
reduces the risk of an accidental invocation and potential service degradation; on the other, it complicates intentional use of the
hidden commands.

The VTY features so-called expert mode, that makes the hidden commands appear in the interactive help, as well as in the XML
VTY reference, just like normal ones. This mode can be activated from the VIEW node by invoking the enable command with
the parameter expert-mode. It remains active for the individual VTY session, and gets disabled automatically when the user
switches back to the VIEW node or terminates the session.

A special attribute in the output of the 1ist with-flags command indicates whether a given command is hidden in normal
mode, or is a regular command:

Example: Hidden commands in the output of the list with-flags command

OsmoBSC> enable expert-mode @
OsmoBSC# list with-flags

~ bts <0-255> (activate-all-lchan|deactivate—-all-lchan) ©
" bts <0-255> trx <0-255> (activate-all-lchan|deactivate-all-lchan) ©

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 23/96

. bts <0-255> trx <0-255> timeslot <0-7> sub-slot <0-7> mdcx A.B.C.D <0-65535> @
~ bts <0-255> trx <0-255> timeslot <0-7> sub-slot <0-7> (borken|unused) ©

bts <0-255> trx <0-255> timeslot <0-7> sub-slot <0-7> handover <0-255> @

bts <0-255> trx <0-255> timeslot <0-7> sub-slot <0-7> assignment @

bts <0-255> smscb-command (normal |schedule|default) <1-4> HEXSTRING ©

o This command enables the expert mode.
0, ©, © This is a hidden command (only shown in the expert mode).

0, 0, @, 0 This is a regular command that is always shown regardless of the mode.

13 libosmocore Logging System

In any reasonably complex software it is important to understand how to enable and configure logging in order to get a better
insight into what is happening, and to be able to follow the course of action. We therefore ask the reader to bear with us while
we explain how the logging subsystem works and how it is configured.

Most Osmocom Software (like osmo-bts, osmo-bsc, osmo-nitb, osmo-sgsn and many others) uses the same common
logging system.

This chapter describes the architecture and configuration of this common logging system.

The logging system is composed of

* log targets (where to log),
* log categories (who is creating the log line),

* log levels (controlling the verbosity of logging), and

log filters (filtering or suppressing certain messages).

All logging is done in human-readable ASCII-text. The logging system is configured by means of VTY commands that can
either be entered interactively, or read from a configuration file at process start time.

13.1 Log categories

Each sub-system of the program in question typically logs its messages as a different category, allowing fine-grained control over
which log messages you will or will not see. For example, in OsmoBSC, there are categories for the protocol layers rs1, rr,
mm, cc and many others. To get a list of categories interactively on the vty, type: logging level ?

13.2 Log levels

For each of the log categories (see Section 13.1), you can set an independent log level, controlling the level of verbosity. Log
levels include:

fatal
Fatal messages, causing abort and/or re-start of a process. This shouldn’t happen.

error
An actual error has occurred, its cause should be further investigated by the administrator.

notice
A noticeable event has occurred, which is not considered to be an error.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 24 /96

info
Some information about normal/regular system activity is provided.

debug
Verbose information about internal processing of the system, used for debugging purpose. This will log the most.

The log levels are inclusive, e.g. if you select info, then this really means that all events with a level of at least info will be logged,
i.e. including events of notice, error and fatal.

So for example, in OsmoBSC, to set the log level of the Mobility Management category to info, you can use the following
command: log level mm info.

There is also a special command to set all categories as a one-off to a desired log level. For example, to silence all messages but
those logged as notice and above issue the command: 1og level set-all notice

Afterwards you can adjust specific categories as usual.

A similar command is log level force-all <lewvel> which causes all categories to behave as if set to log level <level>
until the command is reverted withno log level force-all after which the individually-configured log levels will again
take effect. The difference between set-all and force-all is that set—-all actually changes the individual category
settings while force—all is a (temporary) override of those settings and does not change them.

13.3 Log printing options
The logging system has various options to change the information displayed in the log message.

log color 1
With this option each log message will log with the color of its category. The color is hard-coded and can not be changed.
As with other options a 0 disables this functionality.

log timestamp 1
Includes the current time in the log message. When logging to syslog this option should not be needed, but may come in
handy when debugging an issue while logging to file.

log print extended-timestamp 1
In order to debug time-critical issues this option will print a timestamp with millisecond granularity.

log print category 1
Prefix each log message with the category name.

log print category-hex 1
Prefix each log message with the category number in hex (<000b>).

log print level 1
Prefix each log message with the name of the log level.

log print file 1
Prefix each log message with the source file and line number. Append the keyword last to append the file information

instead of prefixing it.

13.4 Log filters

The default behavior is to filter out everything, i.e. not to log anything. The reason is quite simple: On a busy production setup,
logging all events for a given subsystem may very quickly be flooding your console before you have a chance to set a more
restrictive filter.

To request no filtering, i.e. see all messages, you may use: log filter all 1

In addition to generic filtering, applications can implement special log filters using the same framework to filter on particular
context.

For example in OsmoBSC, to only see messages relating to a particular subscriber identified by his IMSI, you may use: log
filter imsi 262020123456789

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 25/96

13.5 Log targets

Each of the log targets represent certain destination for log messages. It can be configured independently by selecting levels
(see Section 13.2) for categories (see Section 13.1) as well as filtering (see Section 13.4) and other options like Logging
timestamp for example.

13.5.1 Logging to the VTY

Logging messages to the interactive command-line interface (VTY) is most useful for occasional investigation by the system
administrator.

Logging to the VTY is disabled by default, and needs to be enabled explicitly for each such session. This means that multiple
concurrent VTY sessions each have their own logging configuration. Once you close a VTY session, the log target will be
destroyed and your log settings be lost. If you re-connect to the VTY, you have to again activate and configure logging, if you
wish.

To create a logging target bound to a VTY, you have to use the following command: 1ogging enable This doesn’t really
activate the generation of any output messages yet, it merely creates and attaches a log target to the VTY session. The newly-
created target still doesn’t have any filter installed, i.e. all log messages will be suppressed by default

Next, you can configure the log levels for desired categories in your VTY session. See Section 13.1 for more details on categories
and Section 13.2 for the log level details.

For example, to set the log level of the Call Control category to debug, you can use: log level cc debug

Finally, after having configured the levels, you still need to set the filter as it’s described in Section 13.4.

Tip

If many messages are being logged to a VTY session, it may be hard to impossible to still use the same session for any
commands. We therefore recommend to open a second VTY session in parallel, and use one only for logging, while the other
is used for interacting with the system. Another option would be to use different log target.

To review the current vty logging configuration, you can use: show logging vty

13.5.2 Logging to the ring buffer

To avoid having separate VTY session just for logging output while still having immediate access to them, one can use alarms
target. It lets you store the log messages inside the ring buffer of a given size which is available with show alarms command.

It’s configured as follows:

OsmoBSC> enable

OsmoBSC# configure terminal
OsmoBSC (config) # log alarms 98
OsmoBSC (config-log) #

In the example above 98 is the desired size of the ring buffer (number of messages). Once it’s filled, the incoming log messages
will push out the oldest messages available in the buffer.

13.5.3 Logging via gsmtap

GSMTAP is normally a pseudo-header format that enables the IP-transport of GSM (or other telecom) protocols that are not
normally transported over IP. For example, the most common situation is to enable GSMTAP in OsmoBTS or OsmoPCU to
provide GSM-Um air interface capture files over IP, so they can be analyzed in wireshark.

GSMTAP logging is now a method how Osmocom software can also encapsulate its own log output in GSMTAP frames. We’re
not trying to re-invent rsyslog here, but this is very handy When debugging complex issues. It enables the reader of the pcap file

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 26 /96

containing GSMTAP logging together with other protocol traces to reconstruct exact chain of events. A single pcap file can then
contain both the log output of any number of Osmocom programs in the same timeline of the messages on various interfaces in
and out of said Osmocom programs.

It’s configured as follows:

OsmoBSC> enable

OsmoBSC# configure terminal

OsmoBSC (config) # log gsmtap 192.168.2.3
OsmoBSC (config-1log) #

The hostname/ip argument is optional: if omitted the default 127.0.0.1 will be used. The log strings inside GSMTAP are already
supported by Wireshark. Capturing for port 4729 on appropriate interface will reveal log messages including source file
name and line number as well as application. This makes it easy to consolidate logs from several different network components
alongside the air frames. You can also use Wireshark to quickly filter logs for a given subsystem, severity, file name etc.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

WA® & XE Uer»rF3e = =080 E
[W|gsmtap_log.subsys == "NM" B4l -| Expression... + gsmtap gprs ptsr si2q >
Time Source Src Port Destination Dst Port Info

10.000000000 127.0.0.1 42805 (bts=0, trx=0) Changing adm.
L 19 1.771400505 127.0.0.1 42805 127.0.0.1 4729 shutting down OML for BTS @

state Unlocked -> Unlocked [vty

00 00 03 04 00 06 GO0 GG 0O 0P OB 0O G0 00 08 00
45 00 00 bd 62 cl 40 00 40 11 d9 6c 7f 00 00 01
7f 00 00 @1 a7 35 12 79 00 a9 fe bc 02 04 10 @0
00 00 00 G0 00 0O GO0 PO 0O 0P 00 00 5a 47 56 36
9040 00 Ge dé 8b 4f 73 6d 6 42 53 43 00 G0 00 00 60
0E50 00 @O PO 00 60 0O 00 OO 05 OO 00 0O
(LMoo 60 60 00 60 00 00 60 00 00 00 QOJCRECFITINE
5f 6e 6d 2e 63 00 GO GG 0O OO OB 0O GC 00 0O 60
00 00 00 00 00 00 GO G@ 0O 0O 00 00 60 00 Ob 1b
28 62 74 73 3d 30 2c 74 72 78 3d 30 29 20 43 68
61 6e 67 69 6e 67 20 61 64 6d 2e 20 73 74 61 74
65 20 55 6e 6¢c 6T 63 6b 65 64 20 2d 3e 20 55 6e
6c 6f 63 6b 65 64 20 5b 76 74 79 5d Ga

Frame 1: 205 bytes on wire (1640 bits), 285 bytes captured (1640 bits) on
Linux cooked capture
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
User Datagram Protocol, Src Port: 42805, Dst Port: 4729
GSMTAP libosmocore logging OsmoBSC(@): NM/5: abis_nm.c:2843 (bts=0,trx=0)
Timestamp: Jan 5, 2018 10:40:54.972427000 UTC
Application: 0smoBSC
Process ID: ©
Log Level: NOTICE (5)
Source File Name: abis_nm.c
Source Fille Line Number: 2843
String: (bts=8,trx=0) Changing adm. state Unlocked -> Unlocked [vty]\n

=T
v v~

»
© ¥ Subsystem (gsmtap log.subsys), 16 bytes Packets: 19 - Displayed: 2 (10.5%) Profile: Default

Figure 4: Wireshark with logs delivered over GSMTAP

Note: the logs are also duplicated to stderr when GSMTAP logging is configured because stderr is the default log target which is
initialized automatically. To descrease stderr logging to absolute minimum, you can configure it as follows:

OsmoBSC> enable

OsmoBSC# configure terminal

OsmoBSC (config) # log stderr

OsmoBSC (config-log) # logging level force-all fatal

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 27 /96

Note

Every time you generate GSMTAP messages and send it to a unicast (non-broadcast/multicast) IP address, please make sure
that the destination IP address actually has a socket open on the specified port, or drops the packets in its packet filter. If unicast
GSMTAP messages arrive at a closed destination UDP port, the operating system will likely generate ICMP port unreachable
messages. Those ICMP messages in turn will, when arriving at the source (the host on which you run the Osmocom software
sending GSMTAP), suppress generation of further GSMTAP messages for some time, resulting in incomplete files. In case of
doubt, either send GSMTAP to multicast IP addresses, or run something like nc -1 -u -p 4729 > /dev/null onthe
destination host to open the socket at the GSMTAP port and discard anything arriving at it.

13.5.4 Logging to a file

As opposed to Logging to the VTY, logging to files is persistent and stored in the configuration file. As such, it is configured
in sub-nodes below the configuration node. There can be any number of log files active, each of them having different settings
regarding levels / subsystems.

To configure a new log file, enter the following sequence of commands:

OsmoBSC> enable

OsmoBSC# configure terminal

OsmoBSC (config) # log file /path/to/my/file
OsmoBSC (config-log) #

This leaves you at the config-log prompt, from where you can set the detailed configuration for this log file. The available
commands at this point are identical to configuring logging on the VTY, they include 1logging filter, logging level
as well as 1logging color and logging timestamp.

Tip
Don't forgetto use the copy running-config startup-config(oritsshort-handwrite £file)commandto make
your logging configuration persistent across application re-start.

Note
libosmocore provides file close-and-reopen support by SIGHUP, as used by popular log file rotating solutions such as
https://github.com/logrotate/logrotate found in most GNU/Linux distributions.

13.5.5 Logging to syslog

syslog is a standard for computer data logging maintained by the IETF. Unix-like operating systems like GNU/Linux provide
several syslog compatible log daemons that receive log messages generated by application programs.

libosmocore based applications can log messages to syslog by using the syslog log target. You can configure syslog logging by
issuing the following commands on the VTY:

OsmoBSC> enable

OsmoBSC# configure terminal
OsmoBSC (config) # log syslog daemon
OsmoBSC (config-log) #

This leaves you at the config-log prompt, from where you can set the detailed configuration for this log file. The available
commands at this point are identical to configuring logging on the VTY, they include logging filter, logging level
as well as 1logging color and logging timestamp.

Note
Syslog daemons will normally automatically prefix every message with a time-stamp, so you should disable the libosmocore
time-stamping by issuing the 1logging timestamp 0 command.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

https://github.com/logrotate/logrotate

OsmoBTS User Manual 28 /96

13.5.6 Logging to systemd-journal

systemd has been adopted by the majority of modern GNU/Linux distributions. Along with various daemons and utilities it
provides systemd-journald [1] - a daemon responsible for event logging (syslog replacement). libosmocore based applications
can log messages directly to systemd-journald.

The key difference from other logging targets is that systemd based logging allows to offload rendering of the meta information,
such as location (file name, line number), subsystem, and logging level, to systemd-journald. Furthermore, systemd allows to
attach arbitrary meta fields to the logging messages [2], which can be used for advanced log filtering.

[1] https://www.freedesktop.org/software/systemd/man/systemd-journald.service.html [2] https://www.freedesktop.org/software/-
systemd/man/systemd.journal-fields.html

It was decided to introduce libsystemd as an optional dependency, so it needs to be enabled explicitly at configure/build time:

$./configure --enable-systemd-logging

Note
Recent libosmocore packages provided by Osmocom for Debian and CentOS are compiled with libsystemd
(https://gerrit.osmocom.org/c/libosmocore/+/22651).

You can configure systemd based logging in two ways:
Example: systemd-journal target with offloaded rendering

log systemd-journal raw @
logging filter all 1
logging level set-all notice

o raw logging handler, rendering offloaded to systemd.

In this example, logging messages will be passed to systemd without any meta information (time, location, level, category) in the
text itself, so all the printing parameters like 1logging print f£ile will be ignored. Instead, the meta information is passed
separately as fields which can be retrieved from the journal and rendered in any preferred way.

Show Osmocom specific fields
$ journalctl —--fields | grep OSMO

Filter messages by logging subsystem at run-time
$ journalctl OSMO_SUBSYS=DMSC -f

Render specific fields only
$ journalctl —--output=verbose \
——output-fields=SYSLOG_IDENTIFIER, OSMO_SUBSYS,CODE_FILE, CODE_LINE, MESSAGE

Seeman 7 systemd.journal-fields foralistof default fields,andman 1 journalctl for general information and
available formatters.

Example: systemd-journal target with libosmocore based rendering

log systemd-journal ©
logging filter all 1

logging print file basename
logging print category-hex 0
logging print category 1
logging print level 1
logging timestamp 0 ©
logging color 1 ©

logging level set-all notice

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

https://www.freedesktop.org/software/systemd/man/systemd-journald.service.html
https://www.freedesktop.org/software/systemd/man/systemd.journal-fields.html
https://www.freedesktop.org/software/systemd/man/systemd.journal-fields.html
https://gerrit.osmocom.org/c/libosmocore/+/22651

OsmoBTS User Manual 29/96

o Generic logging handler, rendering is done by libosmocore.
2] Disable timestamping, systemd will timestamp every message anyway.
(3] Colored messages can be rendered with journalctl --output=cat.

In this example, logging messages will be pre-processed by libosmocore before being passed to systemd. No additional fields
will be attached, except the logging level (PRIORITY). This mode is similar to syslog and stderr.

13.5.7 Logging to stderr

If you’re not running the respective application as a daemon in the background, you can also use the stderr log target in order to
log to the standard error file descriptor of the process.

In order to configure logging to stderr, you can use the following commands:

OsmoBSC> enable

OsmoBSC# configure terminal
OsmoBSC (config) # log stderr
OsmoBSC (config-log) #

14 BTS Configuration

The role of the BTS is to handle the GSM radio interface. When the BTS application is starting, the A-bis OML connection is
established towards the BSC. Almost all BTS configuration (such as ARFCN, channel configuration, transmit power, etc.) will
be sent from the BSC to the BTS via OML messages. After OML start-up has completed, the BSC will instruct the BTS to
establish the RSL connections.

Given that most configuration is downloaded from the BSC into the BTS at start-up time, only some very basic settings have to
be made in the OsmoBTS software.

14.1 Command Line Options

The OsmoBTS executables (osmo-bts-sysmo, osmo-bts-trx, osmo-bts—octphy, osmo-bts—-litecelll5,...)
share the following generic command line options:

14.1.1 SYNOPSIS

osmo-bts-sysmo [-hl-V] [-d DBGMASK] [-D] [-c CONFIGFILE] [-s] [-T] [-e LOGLEVEL]
14.1.2 OPTIONS

-h, --help
Print a short help message about the supported options

-V, --version
Print the compile-time version number of the OsmoBTS program

-d, --debug DBGMASK,.DBGLEVELS
Set the log subsystems and levels for logging to stderr. This has mostly been superseded by VTY-based logging configu-
ration, see Section 13 for further information.

-D, --daemonize
Fork the process as a daemon into background.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 30/96

-c, --config-file CONFIGFILE
Specify the file and path name of the configuration file to be used. If none is specified, use osmo-bts.cfg in the current
working directory.

-s, --disable-color
Disable colors for logging to stderr. This has mostly been deprecated by VTY based logging configuration, see Section 13
for further information.

-T, --timestamp
Enable time-stamping of log messages to stderr. This has mostly been deprecated by VTY based logging configuration,
see Section 13 for further information.

-e, --log-level LOGLEVEL
Set the global log level for logging to stderr. This has mostly been deprecated by VTY based logging configuration, see
Section 13 for further information.

There may be additional, hardware specific command line options by the different bts_model implementations.

14.2 Configuration using the VTY

Most configuration as well as run-time monitoring and system introspection is implemented using a command-line based interface
called VTY. A full reference syntax of all existing VTY command is available as a separate document.

See Section 12 for further information on the VTY.

14.2.1 Required BTS/TRX configuration

There are some settings that have to be configured locally in the sysmoBTS, as they cannot be set remotely from the BSC. Those
settings are stored in the OsmoBTS configuration file, which commonly is stored in /etc/osmocom/osmo-bts.cfg.

Example Minimal configuration file
!
! OsmoBTS (0.0.1.100-0455) configuration saved from vty
1
!
phy 0 ©
instance 0 @
bts 0 ©
band DCS1800
ipa unit-id 1801 0 @
oml remote-ip 192.168.100.11 ©
trx 0 ©
phy 0 instance 0 @

You must configure at least one PHY link by means of the PHY node

You must configure at least one PHY instance in the PHY link

There is always exactly one BTS (bts 0) configured in OsmoBTS

The ipa unit-id is what is used to identify this BTS to the BSC

The OML Remote IP is the IP address of the BSC, to which the BTS shall connect to.

There must be at least one trx (trx 0) in each BTS

© 6 6 6 06 0 ©

Every TRX must be mapped to a specific PHY instance this way

For a full reference of all available VTY configuration parameters, please refer to the OsmoBTS VTY Reference document.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 31/96

14.2.2 Configuring GSMTAP tracing

In addition to being able to obtain pcap protocol traces of the A-bis communication and the text-based logging from the OsmoBTS
software, there is also the capability of tracing all communication on the radio interface. To do so, OsmoBTS can encapsulate
MAC blocks (23byte messages at the L2-L1 interface) into GSMTAP and send them via UDP/IP. At that point, they can be
captured with utilities like tcpdump or tshark for further analysis by the wireshark protocol analyzer.

In order to activate this feature, you first need to make sure to specify the remote address of GSMTAP host in the configuration
file. In most cases, using 127.0.0.1 for passing the messages over the loopback (10) device will be sufficient:

Example: Enabling GSMTAP Um-frame logging to localhost

bts 0
gsmtap-remote-host 127.0.0.1 @

o Destination address for GSMTAP Um-frames

Note
Changing this parameter at run-time will not affect the existing GSMTAP connection, full program restart is required.

Note
Command line parameters —1 and ——gsmt ap—-1ip have been deprecated.

OsmoBTS can selectively trace such messages by their L1 SAPI, for both Rx and Tx. For a complete list of L1 SAPI values,
please refer to the OsmoBTS VTY reference manual [vty-ref-osmobits].

For example, to enable GSMTAP tracing for messages on all SDCCH channels, you can use the gsmtap-sapi sdcch command at
the CONFIG TRX node of the OsmoBTS VTY.

Example: Enabling GSMTAP for SDCCH

OsmoBTS> enable

OsmoBTS# configure terminal
OsmoBTS (config) # bts 0

OsmoBTS (bts) # gsmtap-sapi sdcch
OsmoBTS (trx) # write @

o the write command will make the configuration persistent in the configuration file. This is not required if you wish to
enable GSMTAP only in the current session of OsmoBTS.

De-activation can be performed similarly by using the no gsmtap-sapi sdcch command at the bt s node of the OsmoBTS
VTY.

It may be useful to enable all SAPIs with a few exceptions, or vice versa disable everything using one command. For this purpose,
the VTY provides gsmtap-sapi enable-all and gsmtap-sapi disable-all commands.

Example: Enabling all SAPIs except PDTCH and PTCCH

bts 0

gsmtap-sapi enable-all @
no gsmtap-sapi pdtch @
no gsmtap-sapi ptcch ©

(1] Enable all available SAPIs

0,0 Exclude PDTCH and PTCCH SAPIs

From the moment they are enabled via VTY, GSMTAP messages will be generated and sent in UDP encapsulation to the IANA-
registered UDP port for GSMTAP (4729) of the specified remote address.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 32/96

14.2.3 Configuring power ramping

OsmoBTS can ramp up the power of its trx over time. This helps reduce cell congestion in busy environments.

Some models of OsmoBTS (such as osmo-bts-trx) also support ramping down the transmit power over time until finally ceasing
broadcast, for instance due to a trx becoming administratively locked or due to the whole BTS being gracefully shut down. This
allows for mobile stations camping on the cell to gradually move to other cells in the area once the signal drop is detected.

In this example, the trx starts with SdBm output power which increases by 1dB every two seconds until it reaches nominal power.
Power ramping can use the power-ramp commands at the CONFIG TRX node of the OsmoBTS VTY.

Example: Configure power ramping on trx 0

OsmoBTS> enable

OsmoBTS# configure terminal

OsmoBTS (config) # bts 0

OsmoBTS (bts)# trx 0

OsmoBTS (trx) # power—ramp max—-initial 5 dBm

OsmoBTS (trx) # power—-ramp step-size 1 dB

OsmoBTS (trx) # power—-ramp step—-interval 2
(trx) #

OsmoBTS (trx) # write @

o the write command will make the configuration persistent in the configuration file.

De-activating power-ramping can be performed by setting the max-initial value to the nominal power. The default max-initial
value is 23 dBm.

14.2.4 Running multiple instances
It is possible to run multiple instances of osmo-bts on one and the same machine, if the phy-interface is flexible enough to
distinguish between different phy hardware interfaces.

Since usually a BTS instance runs in conjunction with a dedicated PCU instance, the socket path between PCU and BTS has to
be distinguished between the running instances. It is possible to change the default socket path via VTY config:

Example: Personalize PCU socket path

bts 0
pcu-socket /tmp/pcu_bts_2

It is also necessary to separate the VT'Y anc CTRL interfaces of the different instances. The VTY, as well as the CTRL interface
can be bound to a free IP address from the loopback range:

Example: Binding VTY and CTRL interface to a specific IP address

line vty
bind 127.0.0.2
ctrl

bind 127.0.0.2

15 Support for Dynamic Timeslots (TCH/F, TCH/H, PDCH)

OsmoBTS supports dynamic switchover of timeslots between different physical channel configurations, initiated by the BSC via
(non-standard) Abis messages — see the OsmoBTS Abis Protocol Specification [osmobts-abis-spec].

The Abis message handling for dynamic timeslots is independent of the BTS model. However, dynamic switchover will only
work for BTS models that implement the internal API to reconnect a timeslot (bts_model_ts_disconnect() and bts_model_ts_connect(),
see also Section 16).

Currently, these OsmoBTS models support dynamic timeslots:

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 33/96

* 0smo-bts-sysmo
e osmo-bts-litecelll5

e osmo-bts-trx

Dynamic timeslots are driven by the BSC and need to be configured there. When using OsmoBSC or OsmoNITB, see the BTS
configuration chapter on dynamic timeslots in [userman-osmobsc] or [userman-osmonitb], respectively.

16 OsmoBTS hardware support

OsmoBTS consists of a common part that applies to all BTS models as well as hardware-specific parts for each BTS model. The
hardware specific parts are generally referred to as the bts_model code.

The common part includes the core BTS architecture as well as code for implementing the external interfaces such as Abis,
control, PCU socket and GSMTAP.

The bts_model parts include support for driving one particular implementation of a GSM physical layer (PHY). Such a physical
layer implementation can come in many forms. Sometimes it runs on a general purpose CPU, sometimes on a dedicated ARM
core, a dedicated DSP, a combination of DSP and FPGA.

Every PHY implementation offers some kind of primitives by which the PHY can be controlled, and by which the PHY exchanges
data with the higher layers of the protocol stack in the OsmoBTS code.

The PHY-specific primitives are encapsulated in the bts_model code, and offered as a PHY-independent L/SAP interface towards
the common part of OsmoBTS.

In addition, each bts_model implements a set of functions that the common part calls. Those functions are pre-fixed by
bts_model_.

Each bts_model may offer

¢ model-specific VTY commands for both configuration and run-time interaction
* model-specific command line arguments

» model-specific control interface commands

17 osmo-bts-sysmo for sysmocom sysmoBTS

The sysmocom sysmoBTS is a range of GSM BTSs based around an embedded system implementing the PHY in a combination
of DSP+FPGA. The PHY is configured by a set of primitives described by header files. Those primitives are exchanged over
a set of message queues exposed on the Linux-running ARM core via device nodes in /dev/msgq/. Internally, the message
queues map to shared memory between the Linux-running ARM core and the DSP running the PHY implementation.

The OsmoBTS bts_model code for the sysmoBTS can be found in the src/osmo-bt s—sysmo sub-directory of the OsmoBTS
code base.

osmo-bts-sysmo has been the primary target platform for OsmoBTS for many years and is thus the most feature-complete
and mature platform supported by OsmoBTS at this point.

The sysmoBTS PHY supports a direct PHY interface to OsmoPCU, reducing the latency and amount of primitives that OsmoBTS
would otherwise need to pass through from the PHY message queues to the PCU socket and vice-versa.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 34 /96

17.1 osmo-bts-sysmo specific command line arguments

--dsp-trace DSPMASK
Set the DSP trace flags (a single hexadecimal 32bit value). This has been deprecated by VTY based commands, see
Section 17.2.1.2 for further information.

--pcu-direct
Indicate that an external PCU (e.g. OsmoPCU) will directly open the DSP message queues to the PHY / PH-SAP, and only
MPH primitives are passed via OsmoBTS.

17.2 osmo-bts-sysmo specific VTY commands

For a auto-generated complete syntax reference of the VI'Y commands, please see the associated OsmoBTS VTY reference
manual [vty-ref-osmobts]. The section below only lists the most important commands.

17.2.1 at the SHOW node

17.2.1.1 show trx 0 clock-source

Display the currently active clock source configuration for the TRX

17.21.2 show trx 0 dsp-trace-flags

Show the currently active DSP trace flags for the TRX

17.21.3 trx 0 dsp-trace-flag

Use this command to enable/disable/configure the DSP tracing flags that define what debug messages will appearon /dev/rtfifo/ds

17.2.2 at the ENABLE node

17.2.21 trx 0 tx-power <-110-100>

Change the current TRX transmit power to the given value in dBm.

17.222 trx 0 rf-clock-info reset

Part of the clock calibration procedure: Reset the clock correction value.

17.2.23 trx 0 rf-clock-info correct

Part of the clock calibration procedure: Apply the current measured correction value between the reference clock and the local
clock.

17.2.3 at the PHY instance node
17.24 clock-calibration eeprom

Obtain clock calibration value from EEPROM.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual

35/96

17.2.5 clock-calibration default

Use hardware default clock calibration value.

17.2.6 clock-calibration <-4095-4095>

Use specified clock calibration value (not EEPROM/default).

17.2.7 clock-source (tcxo|ocxo|ext|gps)
Specify the clock source for the PHY:

tcxo
Use the TCXO. This is the default on sysmoBTS 2050.

0CX0

Use the OCXO (only valid on units equipped with OCXO). This is the default on all sysmoBTS 1002/1020/1100 and

SOB-BTS.

ext
Use the external clock input.

gps

Use the clock derived from GPS. You shouldn’t use this clock directly, but rather use the TCXO and regularly re-calibrate

against GPS.

17.2.8 trx-calibration-path PATH

Use calibration files from the given PATH, rather tan calibration values from the EEPROM.

17.3 osmo-bts-sysmo specific control interface commands

17.3.1 trx.0.clock-info

Obtain information on the current clock status:

bsc_control.py —-d localhost -p 4238 -g trx.0.clock-info
Got message: GET_REPLY 1 trx.0.clock-info -100,ocxo,0,0,gps

which is to be interpreted as:

* current clock correction value is -100 ppb

* current clock source is OCXO

* deviation between clock source and calibration source is O ppb

* resolution of clock error measurement is O ppt (O means no result yet)

e current calibration source is GPS

When this attribute is set, any value passed on is discarded, but the clock calibration process is re-started.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH

DRAFT, unknown

OsmoBTS User Manual 36/96

17.3.2 trx.0.clock-correction

This attribute can get and set the current clock correction value:

bsc_control.py -d localhost -p 4238 -g trx.0.clock-correction
Got message: GET_REPLY 1 trx.0.clock-correction -100

bsc_control.py -d localhost -p 4238 -s trx.0.clock-correction —-- -99
Got message: SET_REPLY 1 trx.0.clock-correction success

18 osmo-bts-trx for OsmoTRX

OsmoTRX is a C-language implementation of the GSM radio modem, originally developed as the Transceiver part of OpenBTS.
This radio modem offers an interface based on top of UDP streams.

The OsmoBTS bts_model code for OsmoTRX is called osmo-bt s—-t rx. Itimplements the UDP stream interface of OsmoTRX,
so both parts can be used together to implement a complete GSM BTS based on general-purpose computing SDR.

As OsmoTRX is general-purpose software running on top of Linux, it is thus not tied to any specific physical hardware. At the
time of this writing, OsmoTRX supports a variety of Lime Microsystems and Ettus USRP SDRs via the UHD driver, as well as
the Fairwaves UmTRX and derived products.

OsmoTRX is not a complete GSM PHY but just the radio modem. This means that all of the Layer 1 functionality such as
scheduling, convolutional coding, etc. is actually also implemented inside OsmoBTS.

As such, the boundary between OsmoTRX and osmo-bts—-trx is at a much lower interface, which is an internal interface of
other more traditional GSM PHY implementations.

Besides OsmoTRX, there are also other implementations (both Free Software and proprietary) that implement the same UDP
stream based radio modem interface.

18.1 osmo-bts-trx specific VTY commands

For a auto-generated complete syntax reference of the VI'Y commands, pleas see the associated OsmoBTS VTY reference manual
[vty-ref-osmobts]. The section below only lists the most important commands.

18.1.1 at the SHOW node

18.1.1.1 show transceivers

Display information about configured/connected OsmoTRX transceivers in human-readable format to current VTY session.

18.1.2 at the PHY configuration node

18.1.2.1 osmotrx ip HOST

Set the IP address for the OsmoTRX interface for both the local (OsmoBTS) and remote (OsmoTRX) side of the UDP flows.
This option has been deprecated by the more detailed option osmotrx ip (local|remote) A.B.C.D.

18.1.2.2 osmotrx ip (local|remote) A.B.C.D

Set the IP address for the OsmoTRX interface for either the local (OsmoBTS) or remote (OsmoTRX) side of the UDP flows.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 37 /96

18.1.2.3 osmotrx base-port (local|remote) <0-65535>

Configure the base UDP port for the OsmoTRX interface for either the local (OsmoBTS) or remote (OsmoTRX) side of the UDP
flows.

18.1.2.4 osmotrx fn-advance <0-30>

Set the number of frames to be transmitted to transceiver in advance of current GSM frame number.

GSM is a TDMA (time division multiple access) system on the radio interface. OsmoTRX is the "clock master" of that in
the Osmocom implementation. It informs OsmoBTS of the current GSM frame number. However, as there is non-zero delays
(UDP packet transmission delay, operating system scheduler delay on both OsmoTRX and OsmoBTS side, ...), OsmoBTS must
compensate for that delay by "advancing" the clock a certain amount of time.

In other words, if OsmoTRX informs us that the current frame number is N, we advance it by fn—-advance and transmit burst
dataforN + fn-advance towards OsmoTRX.

The fn-advance should be kept as low as possible to avoid additional delays to the user voice plane as well as to improve the
performance of the control plane (LAPDm) as well as GPRS.

However, fn-advance must be kept sufficiently high to ensure no underruns on the OsmoTRX side.

The detailed value will depend on your underlying computer systems, operating system and related tuning parameters. Running
OsmoTRX on a remote host will inevitably require a higher fn-advance than running it on the same machine, where the UDP
packets are just passed over the loopback device.

The default value for fn-advance is 2 (corresponding to 9.2 milliseconds).

18.1.2.5 osmotrx rts—-advance <0-30>

Set the number of frames to be requested from L1SAP in advance of current frame number and fn-advance.

The value specified as rt s—advance is added to the current GSM frame number as reported by OsmoTRX and the osmot rx
fn—advance in order to generate the PH-RTS.ind (ready to send indications) across the L1SAP interface inside osmo-bts. This
will trigger the Layer 2 (LAPDm for the control plane, RTP for the voice plane, and OsmoPCU for GPRS) to generate a MAC
block and input it into the osmo-bts-trx TDMA scheduler.

If OsmoTRX reported N as the current frame number, the actual frame number reported on L1SAP to higher layers will be
computed as follows:

N + fn-advance + rts—-advance

The default value of rt s—advance is 3 (corresponding to 14 milliseconds). Do not change this unless you have a good reason!

18.1.2.6 osmotrx rx—-gain <0-50>

Set the receiver gain (configured in the hardware) in dB.

18.1.2.7 osmotrx tx—attenuation <0-50>

Set the transmitter attenuation (configured in the hardware) in dB.

18.1.2.8 osmotrx tx—-attenuation oml

Use the Value in the A-bis OML Attribute MAX_POWER_REDUCTION as transmitter attenuation.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 38/96

18.1.3 at the PHY Instance configuration node
18.1.3.1 slotmask (1]0) (1]0) (1]0) (1|10) (1]0) (1]0) (1]0) (11]0)

Configure which timeslots should be active on this TRX. Normally all timeslots are enabled, unless you are running on a cpu-
constrained deeply embedded system.

18.1.3.2 osmotrx maxdly <0-31>

Set the maximum delay for received symbols (in number of GSM symbols).

19 osmo-bts-octphy for Octasic OCTPHY-2G

The Octasic OCTPHY-2G is a GSM PHY implementation inside an Octasic proprietary 24-core DSP called OCTDSP.

This DSP has a built-in Gigabit Ethernet interface, over which it exchanges PHY-layer primitives in raw Ethernet frames with
the upper layers running on another CPU attached to the same Ethernet. Those primitives are described in a set of C-language
header files.

OsmoBTS implements the raw Ethernet frame based primitives as well as the associated transport protocol (OKTPKT/OCTVC1)
in the osmo-btso—-octphy bts_model code.

You can run the osmo-bts-octphy on any system connected to the same Ethernet as the OCTDSP running the OCTPHY.
This can be either an embedded ARM or x86 SoM part of the OCTBTS hardware, or it can be any other Linux system attached
via an Ethernet switch.

Each OCTDSP running OCTSDR-2G offers a set of primitives part of a OCTPKT session, which is mapped to an OsmoBTS PHY
link. Depending on the OCTSDR-2G software version, you may create multiple software TRX by creating multiple OsmoBTS
PHY instances inside that PHY link.

Multiple DSPs may exist in one circuit board, then each of the DSPs is interfaced by one OsmoBTS PHY link, and each of them
may have one or more OsmoBTS PHY instances creating a Multi-TRX configuration.

20 osmo-bts-litecelll5 for Nutag/Nuran LiteCell 1.5

The Nutag/Nuran LiteCell 1.5 implements a dual-transceiver GSM BTS based on a mixed ARM/DSP/FPGA architecture. The
PHY layer is implemented on DSP/FPGA and similar to that of the sysmoBTS: It exchanges primitives described in a set of
C-language header files over message queues between the ARM and the DSP.

This interface is implemented in the osmo-bts-1itecelll5 bts_model of OsmoBTS. You would run osmo-bts-1itecelll5
on the ARM/Linux processor of the Litecell 1.5.

The two transceivers of the Litecell 1.5 each have their own set of DSP message queues. Each set of message queues is wrapped
into one OsmoBTS PHY link, offering one OsmoBTS PHY instance.

The Litecell 1.5 PHY supports a direct PHY interface to OsmoPCU, reducing the latency and amount of primitives that OsmoBTS
would otherwise need to pass through from the PHY message queues to the PCU socket and vice-versa.

20.1 osmo-bts—trx specific VTY commands

For a auto-generated complete syntax reference of the VI'Y commands, please see the associated OsmoBTS VTY reference
manual [vty-ref-osmobts]. The section below only lists the most important commands.

20.1.1 at the SHOW node

20.1.1.1 show phy <0-255> system-information

Show information about the hardware platform, DSP and OCTPHY-2G software version.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 39/96

20.1.1.2 show phy <0-255> rf-port-stats <0-1>

Show information about the RF port interfaces.

20.1.1.3 show phy <0-255> clk-sync-stats

Show information about the clock synchronization manager.

20.1.2 at the PHY configuration node

20.1.2.1 octphy hw-addr HWADDR

Specify the Ethernet hardware address (mac address) of the DSP running the OCTPHY-2G software for this PHY link.

20.1.2.2 octphy net-device NAME

Specify the Ethernet network device (like eth0) through which the DSP can be reached from OsmoBTS.

20.1.2.3 octphy rf-port-index <0-255>

Specify which RF port should be used for this PHY link.

20.1.2.4 octphy rx—-gain <0-73>

Configure the receiver gain in dB.

20.1.2.5 octphy tx—-attenuation <0-359>

Configure the transmitter attenuation in quarter-dB

21 osmo-bts-virtual for Virtual Um Interface

This is a special BTS model used for research, simulation and testing. Rather than communicating over a wireless RF interface,
the GSM Um messages are encapsulated over GSMTAP/UDP/IP.

The Virtual Um interface (i.e. virtual radio layer) between OsmoBTS and OsmocomBB allows us to run a complete GSM
network with 1-N BTSs and 1-M MSs without any actual radio hardware, which is of course excellent for all kinds of testing
scenarios.

The Virtual Um layer is based on sending L2 frames (blocks) encapsulated via GSMTAP UDP multicast packets. There are two
separate multicast groups, one for uplink and one for downlink. The multicast nature simulates the shared medium and enables
any simulated phone to receive the signal from multiple BTSs via the downlink multicast group.

In OsmoBTS, this is implemented via the osmo-bts-virtual BTS model.

Setting up OsmoBTS in its osmo-bts—-virtual flavor isn’t really much different from setting it up with real hardware. The
amount of required configuration at the BTS configuration file is (as always) very minimal, as in the GSM network architecture
provides almost all relevant configuration to the BTS from the BSC.

An example configuration file is provided as part of the osmo-bts source code: doc/examples/virtual/osmobts-virtual.cf

For more information see http://osmocom.org/projects/cellular-infrastructure/wiki/Virtual_Um

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

http://osmocom.org/projects/cellular-infrastructure/wiki/Virtual_Um

OsmoBTS User Manual 40/ 96

21.1 osmo-bts-virtual specific VTY commands

For a auto-generated complete syntax reference of the VI'Y commands, please see the associated OsmoBTS VTY reference
manual [vty-ref-osmobts]. The section below only lists the most important commands.

21.1.1 at the PHY config node

21.1.1.1 virtual-um net-device NETDEV

Configure the network device used for sending/receiving the virtual Um interface messages (e.g. eth0).

21.1.1.2 virtual-um ms-udp-port <0-65535>

Configure the UDP port used for sending virtual Um downlink messages towards the MS (default: GSMTAP 4729).

21.1.1.3 virtual-um ms-multicast—-group GROUP

Configure the IP multicast group used for sending virtual Um downlink messages towards the MS (default: 239.193.23.1)

21114 virtual-um bts—udp—-port <0-65535>

Configure the UDP port used for receiving virtual Um uplink messages from the MS (default: GSMTAP 4729).

21115 virtual-um bts-multicast—-group GROUP

Configure the IP multicast group used for receiving virtual Um uplink messages from the MS (default: 239.193.23.2)

22 OsmoBTS software architecture

22.1 OsmoBTS PHY interface abstraction

The OsmoBTS PHY interface serves as an internal abstraction layer between given PHY hardware (as provided by the bts_model)
and the actual logical transceivers (TRXs) of a BTS inside the OsmoBTS code base.

22.1.1 PHY link
A PHY link is a physical connection / link towards a given PHY. This might be, for example,

* aset of file descriptors to device nodes in the /dev/ directory (sysmobts, litecell15)
* a packet socket for sending raw Ethernet frames to an OCTPHY

* aset of UDP sockets for interacting with OsmoTRX

Each PHY interface has a set of attribute/parameters and a list of 1 to n PHY instances.
PHY links are numbered 0..n globally inside OsmoBTS.

Each PHY link is configured via the VTY using its individual top-level vty node. Given the different bts-model / phy specific
properties, the VTY configuration options (if any) of the PHY instance differ between BTS models.

The PHY links and instances must be configured above the BTS/TRX nodes in the configuration file. If the file is saved via the
VTY, the code automatically ensures this.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 41 /96

22.1.2 PHY instance

A PHY instance is an instance of a PHY, accessed via a PHY link.

In the case of osmo-bts-sysmo and osmo-bts-trx, there is only one instance in every PHY link. This is due to the fact that the API
inside that PHY link does not permit for distinguishing multiple different logical TRXs.

Other PHY implementations like the OCTPHY however do support addressing multiple PHY instances via a single PHY link.
PHY instances are numbered 0..n inside each PHY link.

Each PHY instance is configured via the VTY as a separate node beneath each PHY link. Given the different bts-model / phy
specific properties, the VTY configuration options (if any) of the PHY instance differ between BTS models.

22.1.3 Mapping PHY instances to TRXs

Each TRX node in the VTY must use the phy N instance M command in order to specify which PHY instance is allocated to this
specific TRX.

22.2 Internal control flow

22.2.1 start-up / sequencing during OsmoBTS start

Table 7: Control flow at OsmoBTS start-up procedure

section function description

bts-specific | main() Entering main() from glibc

common bts_main() initialization of talloc contexts

common bts_log_init() initialization of logging

common handle_options() common option parsing

bts-specific | bts_model_handle_options() model-specific option parsing

common gsm_bts_alloc() allocation of BTS/TRX/TS data structures
common vty_init() Initialziation of VTY core, libosmo-abis and osmo-bts VTY
common main() Setting of scheduler RR priority (if configured)
common main() Initialization of GSMTAP (if configured)
common bts_init() configuration of defaults in bts/trx/s object
bts-specific | bts_model_init ?

common abis_init() Initialization of libosmo-abis

common vty_read_config_file() Reading of configuration file

bts-specific | bts_model_phy_link_set_defaults() Called for every PHY link created

bts-specific | bts_model_phy_instance_set_defaults() | Called for every PHY Instance created
common bts_controlif_setup() Initialization of Control Interface

bts-specific | bts_model_ctrl_cmds_install() Install model-specific control interface commands
common telnet_init_default() Initialization of telnet interface

common pcu_sock_init() Initialization of PCU socket

common main() Installation of signal handlers

common abis_open() Start of the A-bis connection to BSC

common phy_links_open() Iterate over list of configured PHY links
bts-specific | bts_model_phy_link_open() Open each of the configured PHY links
bts-specific | bts_model_phy_link_close() Close each of the configured PHY links
common osmo_daemonize() Fork as daemon in background (if configured)
common bts_main() Run main loop until global variable quit >=2

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

OsmoBTS User Manual 42 /96

22.2.2 At time of OML establishment

Table 8: Control flow at time of OML establishment

section function description

bts-specific | bts_model_oml_estab() Called by core once OML link is established

bts-specific | bts_model_check_oml() called each time OML sets some attributes on a MO, checks if
attributes are valid

bts-specific | bts_model_apply_oml() called each time OML sets some attributes on a MO, stores
attribute contents in data structures

bts-specific | bts_model_opstart() for NM_OC_BTS, NM_OC_SITE_ MANAGER,

NM_OC_GPRS_NSE, NM_OC_GPRS_CELL,
NMO_OC_GPRS_NSVC

bts-specific | bts_model_opstart() for NM_OC_RADIO_CARRIER for each trx
bts-specific | bts_model_opstart() for NM_OC_BASEB_TRANSC for each trx
bts-specific | bts_model_opstart() for NM_OC_CHANNEL for each timeslot on each trx
bts-specific | bts_model_change_power() change transmit power for each trx (power

ramp-up/ramp-down)

22.2.3 At time of RSL connection loss

Table 9: Control flow at time of RSL connection loss

section function description
bts-specific | bts_model_abis_close() called when either one of the RSL links or the OML link are
down
23 Osmux

Osmux is a protocol aimed at multiplexing and transmitting voice and signalling traffic from multiple sources in order to reduce
the overall bandwidth consumption. This feature becomes specially meaningful in case of satellite based GSM systems, where
the transmission cost on the back-haul is relatively expensive. In such environment, even seemingly small protocol optimizations,
eg. message batching and trunking, can result in significant cost reduction.

Full reference document for the osmux protocol can be found here: https://ftp.osmocom.org/docs/latest/osmux-reference.pdf

In Osmocom satellite based GSM networks, the satellite link is envisioned to be in between the BSS and the core network,
that is, between the BSC and the MSC (or BSC-NAT). Hence, Osmocom components can make use of Osmux protocol to
multiplex payload audio streams from call legs between OsmoBSC and OsmoMSC (or OsmoBSCNAT). The MGW attached
those components need of course also be aware of Osmux existence in order to properly set up the audio data plane.

Under some specific circumstances, the operator may decide to set up the network with a bandwidth-limited (e.g. satellite) link
between BTS and BSC. Hence, use of the Osmux protocol is also possible between an Osmux capable BTS (like OsmoBTS) and
OsmoBSC (and its co-located MGW).

23.1 Osmux and NAT

It is quite usual for satellite based links to use NATs, which means any or both of the two components at each side of the satellite
link (BSC and MSC/BSC-NAT) may end up being behind a NAT and being unable to provide the real public address to its peer
on the other side of the satellite.

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

https://ftp.osmocom.org/docs/latest/osmux-reference.pdf

OsmoBTS User Manual 43 /96

As a result, upon call parameter negotiation (RTP/Osmux IP address and port), those parameters won’t be entirely useful and
some specific logic needs to be introduced into the network components to circumvent the NAT under those cases.

For instance, if the BSC and its co-located MGW (BSC/MGW from now on) is under a NAT, it may end up providing its private
address and port as RTP/Osmux parameters to the MSC/MGW through GSM protocols, but MSC will fail to send any message
to that tuple because of the NAT or routing issues (due to IP address being a private address). In that scenario, MSC/MGW
needs to be aware that there’s a NAT and wait until an RTP/Osmux message arrives from the BSC/MGW host. It then can, from
that message source IP address and port (and CID in case of Osmux), discover the real public IP address and port of the peer
(BSC/MGW). From that point on, the BSC/MGW punched a hole in the NAT (its connection table is updated) and MSC/MGW
is able to send data back to it on that connection.

In order to make use of the features above, OsmoMGW must be made aware explicitly through VTY configuration that its peers
are located behind a NAT. This is done through the osmux peer-behind-nat (on|off) VTY commands.

If OsmoMGW itself is behind a NAT, it must use the VTY config rtp keep-alive (used for both RTP and Osmux) to at
least the value once, in order for it to punch the hole in its NAT so that its peer can know where to send packets back to it.

Another characteristic of NATSs is that they tend to drop connections from their connection tables after some inactivity time,
meaning a peer may receive notice about the other end not being available while it actually is. This means the GSM network
needs to be configured in a way to ensure inactivity periods are short enough that this cannot occur.

Hence, if OsmoMGW is behind a NAT, it is actually desirable to have the VTY config rtp keep-alive configured with the
<1-120> value in order to force transmission of dummy packets ever few seconds.

Osmux implementations such as OsmoMGW also come with the osmux dummy VTY command to enable sending dummy
AMR payloads to the peer even if no real data was received (for instance if DTX is used). This is useful under some specific
satellite links which were proven to work unreliably if the total throughput in use over the link changes over time. This way
throughput resources are kept pre-allocated until they are needed again (audio is received again).

23.2 CID allocation

Each peer (BSC/MGW and MSC/MGW) allocates its own local CID, and receives from its peer a remote CID (aka the peer’s
local CID) through the used GSM protocol. This remote CID is then used to send Osmux frames to that peer.

BSC/MGW (localCID=Y, remoteCID=?)<-X--MSC/MGW (localCID=X, remoteCID=?)
BSC/MGW (localCID=Y, remoteCID=X)--Y->MSC/MGW (localCID=X, remoteCID=Y)

This way each peer is responsible for allocating and managing their own local address (CID) space. This is basically the same
that happens with regular IP address and port in the RTP case (and those also apply when Osmux is used, but an extra identifier,
the CID, is allocated).

In an ideal scenario, without NAT, each BSC/MGW would have a public, differentiated and unique IP and port set tuple, And
MSC/MGW should be able to identify messages coming from them by easily matching source IP address, port (and CID in
Osmux case) against the parameters negotiated during call set up.

In this kind of scenario, MSC/MGW could easily open and manage one Osmux socket per BSC (based on SDP IPaddr and port
parameters), with same <localIPaddr, localPort> tuple, allowing for 256 Osmux CIDs per BSC and hence call legs
per BSC. Each of the peers could actually have more than one Osmux socket towards the other peer, by using a pool of ports or IP
addresses, so there’s really not limit if required as long as there’s a way to infer the initially negotiated <srcIP, srcPort,
dstIP, dstPort, remoteCID> tuple from the received audio packets.

However, due to some constrains from in between NATSs explained in section above, BSC/MGW IP address and port are not a
priory known, and could change between different connections coming from it. As a result, it is difficult to infer the entire tuple,
so for now MGW needs to allocate its Osmux local CID in a clever way, in order to be able to identify the full tuple from it.

Hence, currently OsmoMGW CID allocation implementation shares CID between all connections, which means it can only
handle up to 256 concurrent Osmux connections (call legs).

Future work in OsmoMGW (OS#4092) plans to use a set of local ports for Osmux sockets instead of only 1 currently used.
This way local ports can be matched against specific <remoteIP, remotePort> tuplesand have an entire 256 Osmux CID
space per <remoteIP, remotePort> (aka per peer).

Copyright © 2016-2021 sysmocom - s.f.m.c. GmbH DRAFT, unknown

https://osmocom.org/issues/4092

OsmoBTS User Manual 44/ 96

23.3 3GPP AolP network setup with Osmux

RAN
CN

RTP OsmoMGW Osmux OsmoMGW
OsmoBTS 1= his/ip (for BSC) (for MSC) RTP

RTP MGap MG